关闭
当前搜索:

[递推] Codeforces 660E Educational Codeforces Round 11 E. Different Subsets For All Tuples

对于一个确定串ss,求不同子序列的个数有经典dp fi,si=∑jfi−1,jf_{i,s_i}=\sum_j f_{i-1,j} fi,j=fi−1,j,j≠sif_{i,j}=f_{i-1,j},j\neq s_i 因为转移都是形式一样的我试着把所有串的fif_i都加起来,然后就发现FjF_j除了j=ϕj=\phi之外都是一样的,然后就记录两个量,然后就递推出来了#include...
阅读(217) 评论(2)

[递推 || 容斥 FFT] SRM 717 div1 DerangementsStrikeBack

首先像我这种无脑的人可以大力上fft fin!=∑j=0i(−1)j(ij)(n+i−j)!n!{f_i \over n!}=\sum_{j=0}^i (-1)^j {i\choose j} {(n+i-j)!\over n!} 然而考虑经典错排的递推公式 dn=(n−1)(dn−1+dn−2)d_n=(n-1)(d_{n-1}+d_{n-2}) 这个东西的递推式是 把第nn个和n−1n-1...
阅读(203) 评论(0)

[两道递推题] 美团 CodeM 初赛 Round A 二分图染色 & OEIS A001499

好久没做过n=107n=10^7这种正常的递推题了二分图染色转化为棋盘模型,即 N×NN\times N 棋盘上放黑白棋子,每个格子至多放一个,同行同列没有相同颜色的棋子。 令bnb_n为只有一种颜色,那么bn=∑ni=0Cin×Pinb_n=\sum_{i=0}^n C_n^i\times P_n^i 然后我们考虑容斥掉两个颜色在同一格,如果一个格子既放黑又放白,那么这一列和这一行不会有其他棋...
阅读(298) 评论(0)
    个人资料
    • 访问:309406次
    • 积分:12408
    • 等级:
    • 排名:第1311名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:54条
    最新评论