[第二类斯特林数 树形DP] HDU 4625 JZPTREE && BZOJ 2159 Crash 的文明世界

35 篇文章 0 订阅
34 篇文章 0 订阅

%%%jiry_2



也可以这样:http://blog.csdn.net/dwylkz/article/details/9749827



#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define cl(x) memset(x,0,sizeof(x))
using namespace std;

inline char nc(){
	static char buf[100000],*p1=buf,*p2=buf;
	if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
	return *p1++;
}

inline void read(int &x)
{
	char c=nc(),b=1;
	for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
	for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
} 

const int N=50005;
const int K=505;
const int P=10007;

struct edge{
	int u,v,next;
}G[N<<1];
int head[N],inum;

inline void add(int u,int v,int p){
	G[p].u=u; G[p].v=v; G[p].next=head[u]; head[u]=p;
}

inline void add(int &x,int y){
	x+=y; while (x>=P) x-=P;
}

int S[K][K];

inline void Pre(){
	S[0][0]=1;
	for (int i=1;i<=500;i++)
		for (int k=1;k<=500;k++)
			add(S[i][k],S[i-1][k]*k%P+S[i-1][k-1]);
}

int n,k,ans;
int f1[N][K],f2[N][K];

int tmp[K],tem[K],sum[K];
inline void trans(int *f){
	for (int j=0;j<=k;j++)
		add(tmp[j],f[j]+(j?j*f[j-1]%P:0));
}

#define V G[p].v
inline void dfs1(int u,int fa){
	f1[u][0]=1;
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa){
			dfs1(V,u); 
			cl(tmp); trans(f1[V]);
			for (int j=0;j<=k;j++) add(f1[u][j],tmp[j]);
		}
}

inline void dfs2(int u,int fa){
	if (fa) {
		cl(tmp); trans(f2[fa]);
		for (int j=0;j<=k;j++) add(f2[u][j],tmp[j]);
	}
	cl(tmp); trans(f1[u]);
	for (int j=0;j<=k;j++) sum[j]=tmp[j];
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa){
			cl(tmp); trans(f1[V]);
			for (int j=0;j<=k;j++) tem[j]=tmp[j];
			cl(tmp); trans(tem);
			for (int j=0;j<=k;j++) add(f2[V][j],sum[j]-tmp[j]+P);
		}
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa)
			dfs2(V,u);
}

int main(){
	int T,iu,iv;
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	Pre();
	read(T);
	while (T--){
		read(n); read(k);
		for (int i=1;i<n;i++)
			read(iu),read(iv),add(iu,iv,++inum),add(iv,iu,++inum);
		dfs1(1,0);
		dfs2(1,0);
		for (int i=1;i<=n;i++)
		{
			ans=0;
			for (int j=0;j<=k;j++)
				add(ans,((f1[i][j]+f2[i][j])%P)*S[k][j]%P);
			printf("%d\n",ans);
		}
		cl(head); inum=0; 
		for (int i=1;i<=n;i++) cl(f1[i]),cl(f2[i]);
	}
	return 0;
}


#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define cl(x) memset(x,0,sizeof(x))
using namespace std;

inline char nc(){
	static char buf[100000],*p1=buf,*p2=buf;
	if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
	return *p1++;
}

inline void read(int &x)
{
	char c=nc(),b=1;
	for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
	for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
} 

void Uncompress(FILE *infile, FILE *outfile) 
{ int N, k, L, i, now, A, B, Q, tmp; 
fscanf(infile, "%d%d%d", &N, &k, &L); 
fscanf(infile, "%d%d%d%d", &now, &A, &B, &Q); 
fprintf(outfile, "%d %d\n", N, k); 
for (i = 1; i < N; i ++) { now = (now * A + B) % Q; tmp = (i < L) ? i : L; fprintf(outfile, "%d %d\n", i - now % tmp, i + 1); 
} 
}

const int N=50005;
const int K=155;
const int P=10007;

struct edge{
	int u,v,next;
}G[N<<1];
int head[N],inum;

inline void add(int u,int v,int p){
	G[p].u=u; G[p].v=v; G[p].next=head[u]; head[u]=p;
}

inline void add(int &x,int y){
	x+=y; while (x>=P) x-=P;
}

int S[K][K];

inline void Pre(){
	S[0][0]=1;
	for (int i=1;i<=150;i++)
		for (int k=1;k<=150;k++)
			add(S[i][k],S[i-1][k]*k%P+S[i-1][k-1]);
}

int n,k,ans;
int f1[N][K],f2[N][K];

int tmp[K],tem[K],sum[K];
inline void trans(int *f){
	for (int j=0;j<=k;j++)
		add(tmp[j],f[j]+(j?j*f[j-1]%P:0));
}

#define V G[p].v
inline void dfs1(int u,int fa){
	f1[u][0]=1;
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa){
			dfs1(V,u); 
			cl(tmp); trans(f1[V]);
			for (int j=0;j<=k;j++) add(f1[u][j],tmp[j]);
		}
}

inline void dfs2(int u,int fa){
	if (fa) {
		cl(tmp); trans(f2[fa]);
		for (int j=0;j<=k;j++) add(f2[u][j],tmp[j]);
	}
	cl(tmp); trans(f1[u]);
	for (int j=0;j<=k;j++) sum[j]=tmp[j];
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa){
			cl(tmp); trans(f1[V]);
			for (int j=0;j<=k;j++) tem[j]=tmp[j];
			cl(tmp); trans(tem);
			for (int j=0;j<=k;j++) add(f2[V][j],sum[j]-tmp[j]+P);
		}
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa)
			dfs2(V,u);
}

int main(){
	int iu,iv;
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	Pre();
	int now,A,B,Q,L;   
	read(n); read(k); read(L);
	read(now); read(A); read(B); read(Q);
	for(int i=1;i<n;i++)
	{  
		now=(now*A+B)%Q;
		iu=i-now%((i<L)?i:L),iv=i+1;
		add(iu,iv,++inum),add(iv,iu,++inum);
	}
	dfs1(1,0);
	dfs2(1,0);
	for (int i=1;i<=n;i++)
	{
		ans=0;
		for (int j=0;j<=k;j++)
			add(ans,((f1[i][j]+f2[i][j])%P)*S[k][j]%P);
		printf("%d\n",ans);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值