关闭

[随机化 || 黄金分割] HihoCoder #1461 Challenge 26 Rikka with Number

426人阅读 评论(3) 收藏 举报
分类:

这个东西啊 逆过程是一个辗转相减 然后随机化以下最后状态另一个数就好了

比赛的时候被windows的rand坑死 windows下RAND_MAX是32768

被dls教导似乎windows下random_shuffle也有问题?

要不是rand不出来 就拿到奖品了233

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<ctime>
using namespace std;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
  return *p1++;
}

inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

int tot=0;

inline int Gcd(int a,int b){
  return !b?a:(tot+=a/b,Gcd(b,a%b));
}

int len=0;
int lst[1005];

int main(){
  int T,t,n;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  read(T);
  while (T--){
    read(n); int minv=1<<30,mink;
    for (int i=1;i<=1000 && minv>60;i++){
      tot=0;
      if (Gcd(n,t=(long long)rand()*rand()%(n-1)+1)==1)
	if (tot<minv)
	  minv=tot,mink=t;
    }
    int a=n,b=mink;
    len=0;
    while (!(a+b==1))
      if (a>b)
	lst[++len]=0,a-=b;
      else
	lst[++len]=1,b-=a;
    if (a==0 && b==1)
      for (int i=len;i;i--)
	printf("%d",lst[i]);
    else
      for (int i=len;i;i--)
	printf("%d",1-lst[i]);
    printf("\n");
  }
  return 0;
}


比赛时瞎jb乱rand被坑 开始想玄学做法 于是想到了黄金分割

自己怎么想 那么点有道理 大部分没道理

吉丽是这么说的:http://hihocoder.com/discuss/question/4096

0.618就是黄金分割啊..最优情况下就是来回加这样步数最少,你算一下两个的比例就是0.618,所以就直接在这个附近找就可以了


#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<ctime>
using namespace std;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
  return *p1++;
}

inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

int tot=0;

inline int Gcd(int a,int b){
  return !b?a:(tot+=a/b,Gcd(b,a%b));
}

const double ff=0.618;
int len=0;
int lst[1005];

int main(){
  int T,t,n;
  freopen("t.in","r",stdin);
  freopen("t1.out","w",stdout);
  read(T);
  while (T--){
    read(n); int minv=1<<30,mink;
    if (n*ff<=1000){
      for (int i=1;i<=n && minv>60;i++){
	 tot=0;
	 if (Gcd(n,i)==1)
	   if (tot<minv)
	     minv=tot,mink=i;
      }	
    }else{
      for (int i=1;i<=1000 && minv>60;i++){
	tot=0;
	if (Gcd(n,n*ff-500+i)==1)
	  if (tot<minv)
	    minv=tot,mink=n*ff-500+i;
      }
    }
    int a=n,b=mink;
    len=0;
    while (!(a+b==1))
      if (a>b)
	lst[++len]=0,a-=b;
      else
	lst[++len]=1,b-=a;
    if (a==0 && b==1)
      for (int i=len;i;i--)
	printf("%d",lst[i]);
    else
      for (int i=len;i;i--)
	printf("%d",1-lst[i]);
    printf("\n");
  }
  return 0;
}



0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

二分法与黄金分割法求函数方程最小值

二分法与黄金分割法求函数方程最小值程序设计语言:C++ 输入:线性搜索模型(目标函数系数,搜索区间,误差限等) 输出:最优解及对应目标函数值 实验数据 区间[0.3,1],误差ε=1e-...
  • u011233535
  • u011233535
  • 2015-05-22 15:42
  • 2120

一维搜索算法——黄金分割法原理与实现

1.算法原理 设目标函数为F(x),则黄金分割算法的实现过程如下: (1)给定初始区间[a1,b1],精度要求tol>0,黄金分割系数T=0.618,k=1。 (2)令c1=a1+(1-T)(b...
  • shenziheng1
  • shenziheng1
  • 2016-05-04 21:10
  • 4246

最优化第二讲——一维搜索法(黄金分割法和java实现)

一维搜索算法中的黄金搜索法和实现
  • nwpuwyk
  • nwpuwyk
  • 2014-06-04 22:15
  • 1948

hihoCoder挑战赛19 A Rikka with Sequence

数位dp的题, 难
  • dnvtmf
  • dnvtmf
  • 2016-03-22 17:09
  • 223

hihocoder #24 Rikka with Subsequence

题目2 : Rikka with Subsequence 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 众所周知,...
  • CDQZOIERS
  • CDQZOIERS
  • 2016-10-31 11:57
  • 250

[HDU 6093] Rikka with Number

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6093题意: 定义一个好数满足存在一个d(d ≥\geq 2), 使其在d进制的表示下, 每一位正好组...
  • u013578420
  • u013578420
  • 2017-08-08 23:56
  • 73

HDU 6093 Rikka with Number (2017 Multi-University Training Contest - Team 5)

HDU 6093 Rikka with Number 2017 Multi-University Training Contest - Team 5 acm程序设计竞赛
  • m0_38076468
  • m0_38076468
  • 2017-08-09 14:21
  • 171

利用随机化算法对顺序表进行搜索

  • 2012-05-18 09:30
  • 64KB
  • 下载

算法分析 递归与分治策略 动态规划 贪心算法 分支限界法 随机化算法等算法

  • 2010-11-12 10:24
  • 2.34MB
  • 下载

确定性快速排序与随机化快速排序的比较

  • 2017-11-12 09:29
  • 491KB
  • 下载
    个人资料
    • 访问:333207次
    • 积分:12630
    • 等级:
    • 排名:第1284名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:54条
    最新评论