关闭

[点分治] HihoCoder #1462 Challenge 26 Rikka with Tree IV

248人阅读 评论(0) 收藏 举报
分类:

考试的时候打死想不出来 然后Evan在边上随口就切掉了...

直接搬题解吧

考虑包含k个点的链,可以得出任意距离不超过k-1的点的颜色不同。在大小为k 的连
通子图中,任意两点的距离不超过k-1,所以这个条件是充要的。
首先考虑k = 3 的情况,每个点和它的邻居的颜色两两不同,答案不小于max degv + 1 。
因为我们可以从根往下染色,一定存在方法满足条件,所以max degv + 1  足够了。这个结果
可以推广到k 为奇数的情况,答案为max f(v),其中f(v) 为到v 点距离不超过(k-1)/2的点的
个数。
而对于偶数,只要把这个中心改掉边的中间即可。
对于f 值的计算,用点分治就可以。

为了偷懒 搬了BZOJ3730的板子


#include<cstdio>  
#include<cstdlib>  
#include<algorithm>  
#include<vector>  
using namespace std;  
  
inline char nc(){  
  static char buf[100000],*p1=buf,*p2=buf;  
  if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }  
  return *p1++;  
}  
  
inline void read(int &x){  
  char c=nc(),b=1;  
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;  
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;  
}  
  
const int N=200005;  
const int K=25;  
  
struct edge{  
  int u,v,next;  
}G[N<<1];  
int head[N],inum;  
  
inline void add(int u,int v,int p){  
  G[p].u=u; G[p].v=v; G[p].next=head[u]; head[u]=p;  
}  
  
int n,iK;  
#define V G[p].v  
int fat[N][K],dis[N][K];  
int size[N],del[N];  
int sum,rt,minimum;  
  
inline void Root(int u,int fa) {    
  int maximum=0;    
  size[u]=1;    
  for (int p=head[u];p;p=G[p].next)    
    if (V!=fa && !del[V]) {    
      Root(V,u);    
      size[u]+=size[V];    
      maximum=max(maximum,size[V]);    
    }    
  maximum=max(maximum,sum-size[u]);    
  if (minimum>maximum) minimum=maximum,rt=u;    
}  
  
int maxd;  
  
inline void Depth(int u,int fa,int d,int f){  
  size[u]=1; fat[u][++*fat[u]]=f; dis[u][++*dis[u]]=d;  
  maxd=max(maxd,d);  
  for (int p=head[u];p;p=G[p].next)  
    if (!del[V] && V!=fa)  
      Depth(V,u,d+1,f),size[u]+=size[V];  
}  
  
vector<int> c1[N],c2[N];  
  
inline void Divi(int u) {    
  del[u]=1;  
  maxd=0; Depth(u,0,0,u);  
  int tmp=maxd; c1[u].resize(tmp+2); c1[u][0]=tmp+1;   
  for (int p=head[u];p;p=G[p].next)  
    if (!del[V]){  
      sum=size[V]; minimum=1<<30;     
      Root(V,u);  
      c2[rt].resize(tmp+2); c2[rt][0]=tmp+1;  
      Divi(rt);  
    }  
}  
  
inline void Add(vector<int> &c,int x,int r){  
  int maxn=c[0]; x++; for (int i=x;i<=maxn;i+=i&-i) c[i]+=r;  
}  
inline int Query(const vector<int> &c,int x){  
  int ret=0; x++; x=min(x,c[0]); for (int i=x;i;i-=i&-i) ret+=c[i]; return ret;  
}

inline int SQuery(int iu,int iv){
  int ret=0;  
  for (int j=1;j<=*fat[iu];j++)  
    if (iv-dis[iu][j]>=0){  
      ret+=Query(c1[fat[iu][j]],iv-dis[iu][j]);  
      if (j-1) ret-=Query(c2[fat[iu][j-1]],iv-dis[iu][j]);  
    }
  return ret;
}

inline void SAdd(int iu,int iv){
  for (int j=1;j<=*fat[iu];j++){  
    Add(c1[fat[iu][j]],dis[iu][j],iv);  
    if (j-1) Add(c2[fat[iu][j-1]],dis[iu][j],iv);  
  }  
}

int main(){
  int iu,iv;
  freopen("t.in","r",stdin);  
  freopen("t.out","w",stdout);
  read(n); read(iK);  
  for (int i=1;i<n;i++)  
    read(iu),read(iv),add(iu,n+i,++inum),add(n+i,iu,++inum),add(n+i,iv,++inum),add(iv,n+i,++inum);  
  minimum=1<<30; sum=2*n-1; Root(1,0);     
  Divi(rt);  
  for (int i=1;i<=2*n-1;i++){  
    reverse(fat[i]+1,fat[i]+*fat[i]+1),reverse(dis[i]+1,dis[i]+*dis[i]+1);  
    if (i<=n)
      SAdd(i,1);
  }
  int Ans=0;
  if (iK&1){
    for (int i=1;i<=n;i++)
      Ans=max(Ans,SQuery(i,iK-1));
  }else{
    for (int i=n+1;i<2*n;i++)
      Ans=max(Ans,SQuery(i,iK-1));
  }
  printf("%d\n",Ans);
  return 0;  
}  


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:264018次
    • 积分:11943
    • 等级:
    • 排名:第1328名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:50条
    最新评论