关闭

[二分图匹配 线段树] Codeforces 573D Round #318 [RussianCodeCup Thanks-Round] (Div. 1) D. Bear and Cavalry

128人阅读 评论(0) 收藏 举报
分类:

如果没有限制,显然根据排序不等式
当每个点最多有一个限制不能选的时候,有一个很重要的性质

性质:i对应的点与i的距离<=2
证明:
设有一种情况i对应i+3
i—–(i+3)
i+1—(i+2)
i+2—(i)
i+3—(i+1)
那么,对于i,i+1来说,必定在(i–i+2),(i+1–i+3)中有一个限制必选,否则交换i,i+1更优
同理,(i–i)(i+2–i+3),(i–i+1)(i+3–i+3)中有一个限制比选
发现与限制是一组排列不符,而且i对应i+2时只有(i-i+2)(i+1-i)(i+2-i+1)这种可能

然后就在线段树上维护这个区间中左边有几个还没被匹配是要到区间外面匹配的,右边有几个
手撸了所有转移QAQ

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef pair<ll,int> abcd;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}
inline void read(ll &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int N=30005;

int n; abcd a[N],b[N];
int li[N];

ll T[N<<2][3][3];

inline void Max(ll &x,ll y){ x=max(x,y); }
inline ll val(int x,int y){
  return li[a[x].second]==b[y].second?-1LL<<50:a[x].first*b[y].first;
}

inline void upd(int x,int l,int r){
  memset(T[x],-0x1f,sizeof(T[x]));
  int m=(l+r)>>1;
  for (int i1=0;i1<3;i1++)
    for (int j2=0;j2<3;j2++){
      Max(T[x][i1][j2],T[x<<1][i1][0]+T[x<<1|1][0][j2]);
      Max(T[x][i1][j2],T[x<<1][i1][1]+T[x<<1|1][1][j2]+val(m,m+1)+val(m+1,m));
      if (r-m>=2){
    Max(T[x][i1][j2],T[x<<1][i1][1]+T[x<<1|1][2][j2]+val(m,m+2)+val(m+1,m)+val(m+2,m+1));
    Max(T[x][i1][j2],T[x<<1][i1][1]+T[x<<1|1][2][j2]+val(m,m+1)+val(m+1,m+2)+val(m+2,m));
    Max(T[x][i1][j2],T[x<<1][i1][1]+T[x<<1|1][2][j2]+val(m,m+2)+val(m+1,m+1)+val(m+2,m));
      }
      if (m-l+1>=2){
    Max(T[x][i1][j2],T[x<<1][i1][2]+T[x<<1|1][1][j2]+val(m-1,m)+val(m,m+1)+val(m+1,m-1));
    Max(T[x][i1][j2],T[x<<1][i1][2]+T[x<<1|1][1][j2]+val(m-1,m+1)+val(m,m-1)+val(m+1,m));
    Max(T[x][i1][j2],T[x<<1][i1][2]+T[x<<1|1][1][j2]+val(m-1,m+1)+val(m,m)+val(m+1,m-1));
      }
      if (r-m>=2 && m-l+1>=2){
    Max(T[x][i1][j2],T[x<<1][i1][2]+T[x<<1|1][2][j2]+val(m-1,m+1)+val(m,m-1)+val(m+1,m+2)+val(m+2,m));
    Max(T[x][i1][j2],T[x<<1][i1][2]+T[x<<1|1][2][j2]+val(m-1,m)+val(m,m+2)+val(m+1,m-1)+val(m+2,m+1));
    Max(T[x][i1][j2],T[x<<1][i1][2]+T[x<<1|1][2][j2]+val(m-1,m+1)+val(m,m+2)+val(m+1,m-1)+val(m+2,m));
      }
    }
  if (r-l+1==2){
    Max(T[x][0][2],0);
    Max(T[x][2][0],0);
  }
  if (r-l+1==3 && r-m==1){
    Max(T[x][0][2],val(l,l));
    Max(T[x][1][2],0);
  }
  if (r-l+1==3 && r-m==2){
    Max(T[x][2][0],val(r,r));
    Max(T[x][2][1],0);
  }
}

inline void Build(int x,int l,int r){
  if (l==r){
    memset(T[x],-0x1f,sizeof(T[x]));
    T[x][0][1]=T[x][1][0]=0;
    T[x][0][0]=val(l,l);
    return;
  }
  int mid=(l+r)>>1;
  Build(x<<1,l,mid); Build(x<<1|1,mid+1,r);
  upd(x,l,r);
}
inline void modify(int x,int l,int r,int t){
  if (l==r){
    memset(T[x],-0x1f,sizeof(T[x]));
    T[x][0][1]=T[x][1][0]=0;
    T[x][0][0]=val(l,l);
    return;
  }
  int mid=(l+r)>>1;
  if (t<=mid) modify(x<<1,l,mid,t);
  else modify(x<<1|1,mid+1,r,t);
  upd(x,l,r);
}

int pos[N];

int main(){
  int Q,x,y;
  freopen("fantasy.in","r",stdin);
  freopen("fantasy.out","w",stdout);
  read(n); read(Q);
  for (int i=1;i<=n;i++) read(a[i].first),a[i].second=i;
  for (int i=1;i<=n;i++) read(b[i].first),b[i].second=i;
  sort(a+1,a+n+1); sort(b+1,b+n+1);
  for (int i=1;i<=n;i++) li[i]=i,pos[a[i].second]=i;
  Build(1,1,n);
  while (Q--){
    read(x); read(y);
    swap(li[x],li[y]);
    modify(1,1,n,pos[x]);
    modify(1,1,n,pos[y]);
    printf("%lld\n",T[1][0][0]);
  }
  return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:262894次
    • 积分:11930
    • 等级:
    • 排名:第1311名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:49条
    最新评论