关闭

[FWT] UOJ #310. 【UNR #2】黎明前的巧克力

212人阅读 评论(0) 收藏 举报
分类:

这是若干个 2xai+1 的东西的卷积
然后这个FWT一下发现每一项只有 13
那么卷积的FWT每一项就是若干个 13 的乘积
这个不好求
直接加在一起FWT,那么我们得到了每一项 13 的和
因为只有这两个取值,可以直接解方程有多少个 13
然后快速幂再乘起来

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc());
}

const int P=998244353;
const int INV2=(P+1)>>1;
const int N=1048576;
//const int N=8;

int a[N];
inline void FWT(int *a,int n,int r){
  for (int i=1;i<n;i<<=1)
    for (int j=0;j<n;j+=(i<<1))
      for (int k=0;k<i;k++){
    int x=a[j+k],y=a[j+k+i];
    if (r) a[j+k]=(x+y)%P,a[j+k+i]=(x+P-y)%P;
    else a[j+k]=(ll)(x+y)*INV2%P,a[j+k+i]=(ll)(x+P-y)*INV2%P;
      }
}

int pw[N];

inline ll Pow(ll a,int b){
  ll ret=1;
  for (;b;b>>=1,a=a*a%P)
    if (b&1)
      ret=ret*a%P;
  return ret;
}

int main(){
  int n,x;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  read(n);
  pw[0]=1;
  for (int i=1;i<=n;i++) read(x),a[0]++,a[x]+=2,pw[i]=pw[i-1]*3LL%P;
  FWT(a,N,1);
  for (int i=0;i<N;i++){
    x=(ll)(3*n+P-a[i])*INV2%P*INV2%P;
    a[i]=(x&1)?(P-pw[n-x])%P:pw[n-x];
  }
  FWT(a,N,0);
  printf("%d\n",(a[0]+P-1)%P);
  return 0;
}

还有阿爷的分层FWT,具体我忘了,还是那句,退役了

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc());
}

const int P=998244353;
const int INV2=(P+1)>>1;
const int N=1048576;
//const int N=8;

inline void FWT(int *a,int n){
  for (int i=1;i<n;i<<=1)
    for (int j=0;j<n;j+=(i<<1))
      for (int k=0;k<i;k++){
    int x=a[j+k],y=a[j+k+i];
    a[j+k]=(ll)(x+y)*INV2%P,a[j+k+i]=(ll)(x+P-y)*INV2%P;
      }
}

int c[N];

int n;

int f[2][N];
int g[2][N];

inline void Add(int &x,int y){
  x+=y; while (x>=P) x-=P;
}

int main(){
  int x;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  read(n);
  for (int i=1;i<=n;i++) read(x),c[x]++;
  for (int i=0;i<N;i++){
    ll f[2]={1,0},g[2];
    for (int j=1;j<=c[i];j++){
      g[0]=(f[0]+f[1]*2LL)%P,g[1]=(f[1]+f[0]*2LL)%P;
      f[0]=g[0],f[1]=g[1];
    }
    ::f[0][i]=f[0],::f[1][i]=f[1];
  }
  for (int i=1;i<N;i<<=1){
    for (int t=0;t<N;t++) g[0][t]=g[1][t]=0;
    for (int j=0;j<N;j+=(i<<1)){
      for (int x=0;x<2;x++)
    for (int y=0;y<2;y++){
      int *g=::g[x^y],*f1=f[x],*f2=f[y];
      for (int k=0;k<i;k++){
        int tem=(ll)f1[j+k]*f2[j+i+k]%P;
        Add(g[j+k],tem);
        if (y==0) Add(g[j+i+k],tem);
        else Add(g[j+i+k],P-tem);
      }
    }
    }
    for (int t=0;t<N;t++) f[0][t]=g[0][t],f[1][t]=g[1][t];
  }
  FWT(f[0],N);
  FWT(f[1],N);
  printf("%d\n",(f[0][0]+f[1][0]-1)%P);
  return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:308747次
    • 积分:12395
    • 等级:
    • 排名:第1311名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:54条
    最新评论