HDU 1402 A * B Problem Plus (FFT求高精度乘法)

原创 2015年11月17日 21:12:05

存一波代码:题目比较简单。

#include <bits/stdc++.h>
#define LL long long
#define FOR(i,x,y)  for(int i = x;i < y;++ i)
#define IFOR(i,x,y) for(int i = x;i > y;-- i)

using namespace std;

//FFT copy from kuangbin
const double pi = acos (-1.0);
// Complex  z = a + b * i
struct Complex {
    double a, b;

    Complex(double _a=0.0,double _b=0.0):a(_a),b(_b){}

    Complex operator + (const Complex &rhs) const {
        return Complex(a + rhs.a , b + rhs.b);
    }

    Complex operator - (const Complex &rhs) const {
        return Complex(a - rhs.a , b - rhs.b);
    }

    Complex operator * (const Complex &rhs) const {
        return Complex(a * rhs.a - b * rhs.b , a * rhs.b + b * rhs.a);
    }
};

//len = 2 ^ k
void change (Complex y[] , int len) {
    for (int i = 1 , j = len / 2 ; i < len -1 ; i ++) {
        if (i < j) swap(y[i] , y[j]);
        int k = len / 2;
        while (j >= k) {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}

// FFT
// len = 2 ^ k
// on = 1  DFT    on = -1 IDFT
void FFT (Complex y[], int len , int on) {
    change (y , len);
    for (int h = 2 ; h <= len ; h <<= 1) {
        Complex wn(cos (-on * 2 * pi / h), sin (-on * 2 * pi / h));
        for (int j = 0 ; j < len ; j += h) {
            Complex w(1 , 0);
            for (int k = j ; k < j + h / 2 ; k ++) {
                Complex u = y[k];
                Complex t = w * y [k + h / 2];
                y[k] = u + t;
                y[k + h / 2] = u - t;
                w = w * wn;
            }
        }
    }
    if (on == -1) {
        for (int i = 0 ; i < len ; i ++) {
            y[i].a /= len;
        }
    }
}

const int maxn = 50050;
const int mm = maxn<<2;

Complex a[maxn<<2],b[maxn<<2],c[maxn<<2];
LL num[maxn<<2];
int ans[maxn<<2];
char s1[maxn<<1],s2[maxn<<1];
int len;
int flag;

void work(){
    memset(num,0,sizeof(num));
    FFT(a,len,1);
    FFT(b,len,1);
    FOR(i,0,len)    c[i] = a[i]*b[i];
    FFT(c,len,-1);
    FOR(i,0,len)    num[i] = (LL)(c[i].a+0.5);
    LL car = 0;
    FOR(i,0,mm){
        ans[i] = (num[i]+car)%10;
        car = (num[i]+car)/10;
    }
    int tot = 0;
    IFOR(i,mm-1,-1){
        if(ans[i])  {tot = i;break;}
    }
    if(!flag)   printf("-");
    IFOR(i,tot,-1){
        printf("%d",ans[i]);
    }
    printf("\n");
}

int main()
{
    //freopen("test.in","r",stdin);
    while(~scanf("%s%s",s1,s2)){
        flag = 1;
        int len1 = strlen(s1),len2 = strlen(s2);
        FOR(i,1,len1)   a[len1-1-i] = Complex(s1[i] - '0',0);
        FOR(i,1,len2)   b[len2-1-i] = Complex(s2[i] - '0',0);
        if(s1[0] == '-') {flag ^= 1;-- len1;}
        else    a[len1-1] = s1[0] - '0';
        if(s2[0] == '-') {flag ^= 1;-- len2;}
        else    b[len2-1] = s2[0] - '0';
        int mx_len = 1+max(len1,len2);
        mx_len <<= 1;
        len = 1;
        while(len < mx_len) len <<= 1;
        FOR(i,len1,len) a[i] = Complex(0,0);
        FOR(i,len2,len) b[i] = Complex(0,0);
        work();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

HDU 1402 FFT 求 大数乘法

这题的数据量是5w, 也就是传统意义上的n^2算法是不可取的。这里就用到了FFT FFT一般的作用就是使得多项式乘法的复杂度降到nlogn。利用FFT可以快速求出循环卷积。 那么卷积又是什...
  • sdj222555
  • sdj222555
  • 2013年08月06日 10:13
  • 6740

FFT:快速傅里叶变换与高精度乘法

最后修改:2016.09.15
  • ljhandlwt
  • ljhandlwt
  • 2016年07月24日 09:31
  • 4046

hdu1402 大数相乘 快速傅里叶变换FFT

FFT入门题,FFT模板 #include #include #include #include #include #include using namespace std; #de...
  • Jackyguo1992
  • Jackyguo1992
  • 2013年10月11日 11:08
  • 5335

FFT多项式乘法学习笔记

其实我不知道我是否真的理解了FFT,但是我会用FFT优化多项式乘法了QAQ。。 (以下大多摘自算导 前置知识 1. 多项式   在一个代数域F上,关于变量x的多项式定义为形式和形式表示的函数A(x)...
  • Tag_king
  • Tag_king
  • 2015年06月03日 21:41
  • 2097

hdu1402 A * B Problem Plus 高精度乘法 快速傅里叶变换(FFT)

模板题,具体请看代码注释 PS:wikioi3123需要把N改为400005,再去掉printf("\n");即可 #include #include #include #include #d...
  • u011328276
  • u011328276
  • 2013年08月17日 11:02
  • 2485

【快速傅里叶变换】【FFT】【WikiOI】【P3132】【高精度练习之超大整数乘法】

传送门:http://www.wikioi.com/problem/3123/ FFT,快速傅里叶变换,蒟蒻看别人的题解都太深奥,看不懂,好不容易学会,以蒟蒻的理解写给那些想学FFT却又找不到合适的资...
  • u012732945
  • u012732945
  • 2014年04月01日 09:24
  • 143011

hdu1402 A*B 快速傅里叶变换(FFT)

两个不超过50000位的数,求乘积。高精度乘法,但是写暴力高精的话复杂度是O(n^2),不压位估计是要T掉的=,这里介绍一种新的方法,可以在O(nlogn)的复杂度内求出答案。 先来说一下我对fft的...
  • yanglei040
  • yanglei040
  • 2014年03月05日 15:21
  • 897

FFT详解&大数乘法

引入传统的乘法的方法类似于利用列竖式的方法,时间复杂度为O(N2)O(N^{2})。但是利用FFT的方法,我们可以把时间复杂度降到O(NlogN)O(NlogN)。系数表示法设A和B是两个很大的数,C...
  • Ripped
  • Ripped
  • 2017年04月19日 15:52
  • 1514

【FFT】大整数乘法

http://www.cnblogs.com/skyivben/archive/2008/07/23/1248413.html 整理一下模板 hdu1402 sincos需要手写,因为hdu没有...
  • huyuncong
  • huyuncong
  • 2014年07月26日 20:13
  • 1518

HDU-A+B Problem 的Java题解 用Java语言做ACM的注意事项

A+B问题应该可以说是做起来最开心的ACM题目了,杭电上从1089~1096全都是A+B问题,虽然都是水题,但是在此处也贴出来算了,八道题随便贴几道,内容没什么好说的,就加加加~~~就行啦。   因...
  • qq_33171970
  • qq_33171970
  • 2015年11月28日 21:37
  • 1774
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 1402 A * B Problem Plus (FFT求高精度乘法)
举报原因:
原因补充:

(最多只允许输入30个字)