POJ 1222 EXTENDED LIGHTS OUT (异或消元)

原创 2015年11月18日 00:04:12

分析:一共有30个开关,30个灯,设a[i][j]代表第j个开关对第i个灯的贡献,那么a[i][j]=1或者0,其中a[i][i]=1,周围4个灯的贡献为1,其他都是0,用x[i]表示第i个开关有无按下,c[i]表示第i个灯的初始状态,那么对于第i个灯,得到异或方程:

c[i] xor (a[i][0]x[0]) xor (a[i][1]x[1]) xor ... xor (a[i][29]x[29])=0(a[i][0]x[0]) xor (a[i][1]x[1]) xor ... xor (a[i][29]x[29])=0 xor c[i]

得到一个异或方程组,这个时候异或消元,找出方程组的解即可。

这里也不需要按照高斯消元来写(上一次我就是按照高斯消元写的。。。),详见代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define LL long long
#define FOR(i,x,y)  for(int i = x;i < y;++ i)
#define IFOR(i,x,y) for(int i = x;i > y;-- i)

using namespace std;

const int maxn = 30;

int a[maxn];
int n,mat[5][6],c[30];

void init(){
    FOR(i,0,5){
        FOR(j,0,6)  scanf("%d",&mat[i][j]),c[6*i+j] = 0^mat[i][j];
    }
    FOR(i,0,5){
        FOR(j,0,6){
            int u = i*6+j;
            a[u] = (1<<(30-u))^c[u];
            if(i > 0)   a[u] ^= (1<<(36-u));
            if(i < 4)   a[u] ^= (1<<(24-u));
            if(j > 0)   a[u] ^= (1<<(31-u));
            if(j < 5)   a[u] ^= (1<<(29-u));
        }
    }
}

int xorguass(int n){
    int row = 0;
    for(int i = 30;i >= 0;-- i){
        int j;
        for(j = row;j < n;++ j){
            if(a[j] & (1<<i))   break;
        }
        if(j != n){
            swap(a[j],a[row]);
            for(j = 0;j < n;++ j){
                if(j == row)    continue;
                if(a[j] & (1<<i))   a[j] ^= a[row];
            }
        }
        ++ row;
    }
    return row;
}

int ans[5][6];

void work(){
    int n = xorguass(30);
    FOR(i,n,30) a[i] = 0;
    FOR(i,0,30){
        ans[i/6][i%6] = a[i]%2;
    }
    FOR(i,0,5){
        FOR(j,0,5)  printf("%d ",ans[i][j]);
        printf("%d\n",ans[i][5]);
    }
}

int main()
{
    //freopen("test.in","r",stdin);
    int T,tCase = 0;    scanf("%d",&T);
    while(T--){
        printf("PUZZLE #%d\n",++tCase);
        init();
        work();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 1222|Extended Lights Out|高斯消元|异或方程组

其实挺惊讶的咋没A这题。。#include #include #include using namespace std; #define FOR(i,j,k) for(i=j;i...

POJ 1222-EXTENDED LIGHTS OUT(高斯消元求解异或方程组)

题目地址:POJ 1222 题意:有一个5*6的矩阵,每个位置都表示按钮和灯,1表示亮,0表示灭。每当按下一个位置的按钮,它和它周围灯的状态全部翻转(题目中给出如何影响),问在这样的一个方阵中按下哪...

POJ 1222 EXTENDED LIGHTS OUT 枚举 || 高斯消元

题目大意就不说了,就是把棋盘上的1全变0即可 如果枚举的话,看似有2的30次方中可能,其实不是。 实际上只需要枚举第一行的状态即可,再往后,如果想要解决问题,必须根据第一行的状态推下去。 对于每...

POJ 1222 EXTENDED LIGHTS OUT 高斯消元?暴力枚举!

题目链接:http://poj.org/problem?id=1222 题目大意:给一个6*5的矩阵,表示30个灯泡的开关情况,其中0代表关,1代表开。可以认为每个灯上有一个开关,按下开关之...

poj 1222 EXTENDED LIGHTS OUT (高斯消元)

EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 782...
  • whai362
  • whai362
  • 2015年10月06日 11:56
  • 198

poj 1222 EXTENDED LIGHTS OUT 高斯消元

高斯消元模板题 #include #include #include using namespace std; int equ = 30 , var = 30; int a[33][33]...

poj1222 EXTENDED LIGHTS OUT (高斯消元)

EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 927...

POJ1222 EXTENDED LIGHTS OUT 由简单深搜引发的二进制高斯消元

 Problem Address:http://poj.org/problem?id=1222 就这道题而言,它是一道简单题。  【深搜思路】 (1)从左上角开始向右下角搜索,分别探测按与不按的情况。...

poj1222 EXTENDED LIGHTS OUT(YY+高斯消元)

EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 731...
  • modiz
  • modiz
  • 2015年03月31日 20:28
  • 359

POJ 1222 EXTENDED LIGHTS OUT(高斯消元)

题目链接~~~  这道题做的真纠结,这是学习高斯消元的第一题,没想到就……,开始想了很久没想到怎么做,然后看一些题解吧,结果题解也没看懂。主要是不明白为什么那样列方程,为什么有唯一解,搜了很多博客加...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1222 EXTENDED LIGHTS OUT (异或消元)
举报原因:
原因补充:

(最多只允许输入30个字)