关闭

hiho一下 连通性二·边的双连通分量

标签: 无向图边的双连通分量dfsTarjan算法
526人阅读 评论(0) 收藏 举报
分类:
时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

在基本的网络搭建完成后,学校为了方便管理还需要对所有的服务器进行编组,网络所的老师找到了小Hi和小Ho,希望他俩帮忙。

老师告诉小Hi和小Ho:根据现在网络的情况,我们要将服务器进行分组,对于同一个组的服务器,应当满足:当组内任意一个连接断开之后,不会影响组内服务器的连通性。在满足以上条件下,每个组内的服务器数量越多越好。

比如下面这个例子,一共有6个服务器和7条连接:

其中包含2个组,分别为{1,2,3},{4,5,6}。对{1,2,3}而言,当1-2断开后,仍然有1-3-2可以连接1和2;当2-3断开后,仍然有2-1-3可以连接2和3;当1-3断开后,仍然有1-2-3可以连接1和3。{4,5,6}这组也是一样。

老师把整个网络的情况告诉了小Hi和小Ho,小Hi和小Ho要计算出每一台服务器的分组信息。

   

提示:边的双连通分量

 

输入

第1行:2个正整数,N,M。表示点的数量N,边的数量M。1≤N≤20,000, 1≤M≤100,000

第2..M+1行:2个正整数,u,v。表示存在一条边(u,v),连接了u,v两台服务器。1≤u<v≤N

保证输入所有点之间至少有一条连通路径。

输出

第1行:1个整数,表示该网络的服务器组数。

第2行:N个整数,第i个数表示第i个服务器所属组内,编号最小的服务器的编号。比如分为{1,2,3},{4,5,6},则输出{1,1,1,4,4,4};若分为{1,4,5},{2,3,6}则输出{1,2,2,1,1,2}





样例输入
6 7
1 2
1 3
2 3
3 4
4 5
4 6
5 6
样例输出
2
1 1 1 4 4 4
提示:

对于一个无向图,当我们把图中所有的桥都去掉以后,剩下的每一个区域就是我们要求的边的双连通分量。比如:

其中{1,2,3},{4,5,6},{7}各为一个组。

直观的做法自然先用上周的算法求出所有桥,去掉所有桥之后再做DFS求出每一个连通子图。我们这周要介绍一种更"抽象"的算法,通过在Tarjan算法当中巧妙地用一个栈来统计出每一个组内的节点,其代码如下:

void dfs(int u) {
    //记录dfs遍历次序
    static int counter = 0;    
    
    //记录节点u的子树数
    int children = 0;
    
    ArcNode *p = graph[u].firstArc;
    visit[u] = 1;

    //初始化dfn与low
    dfn[u] = low[u] = ++counter;
    
    //将u加入栈
    stack[++top] = u;

    for(; p != NULL; p = p->next) {
        int v = p->adjvex;
        
        //节点v未被访问,则(u,v)为树边
        if(!visit[v]) {
            children++;
            parent[v] = u;
            dfs(v);

            low[u] = min(low[u], low[v]);
            if (low[v] > dfn[u]) {
                printf("bridge: %d %d\n", u, v);    // 该边是桥
                bridgeCnt++;  
            }
        }

        //节点v已访问,则(u,v)为回边
        else if(v != parent[u]) {
            low[u] = min(low[u], dfn[v]);
        }
    }
    
    if (low[u] == dfn[u])
    {
        // 因为low[u] == dfn[u],对(parent[u],u)来说有dfn[u] > dfn[ parent[u] ],因此low[u] > dfn[ parent[u] ]
        // 所以(parent[u],u)一定是一个桥,那么此时栈内在u之前入栈的点和u被该桥分割开
        // 则u和之后入栈的节点属于同一个组
        将从u到栈顶所有的元素标记为一个组,并弹出这些元素。
    }
}

完整代码:
#include <iostream>
#include <string.h>
#include <cstdio>
#include <set>
#include <algorithm>
using namespace std;
#define maxn 20100
#define maxe 200100
struct Edge
{
    int v,next;
}E[maxe];
int dfn[maxn],low[maxn],head[maxn],Stack[maxn],Belong[maxn],parent[maxn],counter,len,Stop,n, MinVlaue,m,ans;
void AddEdge(int a, int b)
{
    len++;
    E[len].v = b;
    E[len].next = head[a];
    head[a] = len;
}
void dfs(int u)
{
    int v;
    dfn[u] = low[u]=++counter; //初始化dfn与low
    Stack[Stop++]=u; //将u加入栈
    for (int i = head[u]; i!=-1; i = E[i].next)
    {
        v = E[i].v;
        if (!dfn[v])  //节点v未被访问,则(u,v)为树边
        {
            parent[v]=u;
            dfs(v);
            low[u] = min(low[u], low[v]);
            if(low[v]>dfn[u])
            {
                //printf("bridge: %d %d\n", u, v);    // 该边是桥
            }
        }
        //节点v已访问,则(u,v)为回边
        else if(v != parent[u])
        {
            low[u] = min(low[u], dfn[v]);
        }
    }

    if(low[u]==dfn[u])
    {
        // 因为low[u] == dfn[u],对(parent[u],u)来说有dfn[u] > dfn[ parent[u] ],因此low[u] > dfn[ parent[u] ]
        // 所以(parent[u],u)一定是一个桥,那么此时栈内在u之前入栈的点和u被该桥分割开
        // 则u和之后入栈的节点属于同一个组
        //将从u到栈顶所有的元素标记为一个组,并弹出这些元素。
        ans++;
        int temp=Stop-1;
        while (Stack[temp]!=u)
        {
            temp--;
        }
        MinVlaue=*min_element(Stack+temp, Stack+Stop);
        do
        {
           
            v=Stack[--Stop];
            Belong[v]=MinVlaue;
        }while (u!=v);
    }
    
}

int main()
{
    int a,b;
    while (scanf("%d%d", &n, &m)!=EOF)
    {
        memset(head, -1, sizeof(head));
        memset(parent, 0, sizeof(parent));
        counter=0;
        ans=0;
        Stop=0;
        memset(dfn,0, sizeof(dfn));
        for (int i = 1; i <= m; i++)
        {
            scanf("%d%d", &a, &b);
            AddEdge(a,b);
            AddEdge(b,a);
        }
        dfs(1);
        printf("%d\n",ans);
        for (int i=1; i<=n; i++)
        {
            printf("%d ",Belong[i]);
        }
    }
    return 0;
}







0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:178220次
    • 积分:6902
    • 等级:
    • 排名:第3312名
    • 原创:539篇
    • 转载:3篇
    • 译文:0篇
    • 评论:15条
    最新评论