hiho一下 连通性二·边的双连通分量

原创 2015年07月10日 17:33:55
时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

在基本的网络搭建完成后,学校为了方便管理还需要对所有的服务器进行编组,网络所的老师找到了小Hi和小Ho,希望他俩帮忙。

老师告诉小Hi和小Ho:根据现在网络的情况,我们要将服务器进行分组,对于同一个组的服务器,应当满足:当组内任意一个连接断开之后,不会影响组内服务器的连通性。在满足以上条件下,每个组内的服务器数量越多越好。

比如下面这个例子,一共有6个服务器和7条连接:

其中包含2个组,分别为{1,2,3},{4,5,6}。对{1,2,3}而言,当1-2断开后,仍然有1-3-2可以连接1和2;当2-3断开后,仍然有2-1-3可以连接2和3;当1-3断开后,仍然有1-2-3可以连接1和3。{4,5,6}这组也是一样。

老师把整个网络的情况告诉了小Hi和小Ho,小Hi和小Ho要计算出每一台服务器的分组信息。

   

提示:边的双连通分量

 

输入

第1行:2个正整数,N,M。表示点的数量N,边的数量M。1≤N≤20,000, 1≤M≤100,000

第2..M+1行:2个正整数,u,v。表示存在一条边(u,v),连接了u,v两台服务器。1≤u<v≤N

保证输入所有点之间至少有一条连通路径。

输出

第1行:1个整数,表示该网络的服务器组数。

第2行:N个整数,第i个数表示第i个服务器所属组内,编号最小的服务器的编号。比如分为{1,2,3},{4,5,6},则输出{1,1,1,4,4,4};若分为{1,4,5},{2,3,6}则输出{1,2,2,1,1,2}





样例输入
6 7
1 2
1 3
2 3
3 4
4 5
4 6
5 6
样例输出
2
1 1 1 4 4 4
提示:

对于一个无向图,当我们把图中所有的桥都去掉以后,剩下的每一个区域就是我们要求的边的双连通分量。比如:

其中{1,2,3},{4,5,6},{7}各为一个组。

直观的做法自然先用上周的算法求出所有桥,去掉所有桥之后再做DFS求出每一个连通子图。我们这周要介绍一种更"抽象"的算法,通过在Tarjan算法当中巧妙地用一个栈来统计出每一个组内的节点,其代码如下:

void dfs(int u) {
    //记录dfs遍历次序
    static int counter = 0;    
    
    //记录节点u的子树数
    int children = 0;
    
    ArcNode *p = graph[u].firstArc;
    visit[u] = 1;

    //初始化dfn与low
    dfn[u] = low[u] = ++counter;
    
    //将u加入栈
    stack[++top] = u;

    for(; p != NULL; p = p->next) {
        int v = p->adjvex;
        
        //节点v未被访问,则(u,v)为树边
        if(!visit[v]) {
            children++;
            parent[v] = u;
            dfs(v);

            low[u] = min(low[u], low[v]);
            if (low[v] > dfn[u]) {
                printf("bridge: %d %d\n", u, v);    // 该边是桥
                bridgeCnt++;  
            }
        }

        //节点v已访问,则(u,v)为回边
        else if(v != parent[u]) {
            low[u] = min(low[u], dfn[v]);
        }
    }
    
    if (low[u] == dfn[u])
    {
        // 因为low[u] == dfn[u],对(parent[u],u)来说有dfn[u] > dfn[ parent[u] ],因此low[u] > dfn[ parent[u] ]
        // 所以(parent[u],u)一定是一个桥,那么此时栈内在u之前入栈的点和u被该桥分割开
        // 则u和之后入栈的节点属于同一个组
        将从u到栈顶所有的元素标记为一个组,并弹出这些元素。
    }
}

完整代码:
#include <iostream>
#include <string.h>
#include <cstdio>
#include <set>
#include <algorithm>
using namespace std;
#define maxn 20100
#define maxe 200100
struct Edge
{
    int v,next;
}E[maxe];
int dfn[maxn],low[maxn],head[maxn],Stack[maxn],Belong[maxn],parent[maxn],counter,len,Stop,n, MinVlaue,m,ans;
void AddEdge(int a, int b)
{
    len++;
    E[len].v = b;
    E[len].next = head[a];
    head[a] = len;
}
void dfs(int u)
{
    int v;
    dfn[u] = low[u]=++counter; //初始化dfn与low
    Stack[Stop++]=u; //将u加入栈
    for (int i = head[u]; i!=-1; i = E[i].next)
    {
        v = E[i].v;
        if (!dfn[v])  //节点v未被访问,则(u,v)为树边
        {
            parent[v]=u;
            dfs(v);
            low[u] = min(low[u], low[v]);
            if(low[v]>dfn[u])
            {
                //printf("bridge: %d %d\n", u, v);    // 该边是桥
            }
        }
        //节点v已访问,则(u,v)为回边
        else if(v != parent[u])
        {
            low[u] = min(low[u], dfn[v]);
        }
    }

    if(low[u]==dfn[u])
    {
        // 因为low[u] == dfn[u],对(parent[u],u)来说有dfn[u] > dfn[ parent[u] ],因此low[u] > dfn[ parent[u] ]
        // 所以(parent[u],u)一定是一个桥,那么此时栈内在u之前入栈的点和u被该桥分割开
        // 则u和之后入栈的节点属于同一个组
        //将从u到栈顶所有的元素标记为一个组,并弹出这些元素。
        ans++;
        int temp=Stop-1;
        while (Stack[temp]!=u)
        {
            temp--;
        }
        MinVlaue=*min_element(Stack+temp, Stack+Stop);
        do
        {
           
            v=Stack[--Stop];
            Belong[v]=MinVlaue;
        }while (u!=v);
    }
    
}

int main()
{
    int a,b;
    while (scanf("%d%d", &n, &m)!=EOF)
    {
        memset(head, -1, sizeof(head));
        memset(parent, 0, sizeof(parent));
        counter=0;
        ans=0;
        Stop=0;
        memset(dfn,0, sizeof(dfn));
        for (int i = 1; i <= m; i++)
        {
            scanf("%d%d", &a, &b);
            AddEdge(a,b);
            AddEdge(b,a);
        }
        dfs(1);
        printf("%d\n",ans);
        for (int i=1; i<=n; i++)
        {
            printf("%d ",Belong[i]);
        }
    }
    return 0;
}







版权声明:欢迎互相学习

相关文章推荐

hihoCoder_#1184_连通性二·边的双连通分量

#1184 : 连通性二·边的双连通分量 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在基本的网络搭建完成后,学校为了方便管理还需要对所有的服务器进行编组,...

hiho一下 连通性·三 强连通分量

时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家。今天一大早,约翰因为有事要出去,就拜托小H...

[hihoCoder 1190] 连通性·四:点-双连通分量

题意:求点-双连通分量,输出每条边所在双连通分量中边的最小编号。 先前AC了,修改了一个地方,WA。本地对拍,段错误。以为是dfs爆栈,结果是数组越界......那之前是怎么AC的呢?修正了数组的越...

图的连通性问题&tarjan求强连通分量、割点、桥

基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点。 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成...

【51nod1076】【2条不相交的路径】【图论】【边双连通分量】

题目大意给出一个无向图G的顶点V和边E。进行Q次查询,查询从G的某个顶点V[s]到另一个顶点V[t],是否存在2条不相交的路径。(两条路径不经过相同的边)解题思路求边双连通分量,在同一个分量中的点输出...

codeforces round 377 div2 F Tourist Reform tarjan求边双连通分量

F. Tourist Reform time limit per test 4 seconds memory limit per test 256 megabytes input...

POJ 3177 / POJ 3352 : Redundant Paths / Road Construction - 边双连通分量,缩点

题意:给定现有的R条直接连接2个牧场的路,F-1分析:见代码及注释……《图论算法理论实现应用》——P4123177Accepted700K16MSG++2320B2014-03-14 16:55:30...

hdu4738 Caocao's Bridges(双连通分量割边/桥)

Problem Description Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he...

POJ3177_Redundant_Paths_边双连通分量_tarjan

题意: 给一个图,问你最少添加多少条边可以成为一个双连通图(就是去掉任何一条边后图仍然连通) 题解:【摘自北大的集训课件】 只需在求出所有的桥以后,把桥边删除,原图变成了多个连通块,则每个连通块...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)