[bat]将 DIR 的结果逐条赋值给一系列的变量

原创 2015年07月08日 18:25:37

<span style="font-family: Arial, Helvetica, sans-serif;">1. 将 DIR 的结果逐条赋值给一系列的变量:</span>

第1部分摘自:http://zhidao.baidu.com/link?url=3KM6KaZXvjjHd5TKNOGDTxdQt0K3r7jhBxhM7gYR-kX3BMeCkulWaGyk4mEbMMDzgmkrMuDtORdGEESEdJuNaa

假设有X个结果,那么就把他们分别赋值到变量k1、k2、k3……kx


脚本如下:

@echo off&setlocal enabledelayedexpansion
set a=0
for /f  "delims=" %%a in ('dir *.bat /a/s/b'do (
set /a a+=1
set "k!a!=%%a"
)








讲解:

"set /a a+=1"是"set /a a=a+1"的简写 

"set /a a=a+1" 是“set /a a=!a!+1”或“set /a a=%a%+1”的简写

用"!"的前提是前面有“setlocal enabledelayedexpansion”

想显示所有变量,可以用

1
2
@echo off&setlocal enabledelayedexpansion
for /l %%a in (1,1,%a%) do echo !k%%a!

这些变量名是从k1到k%a%


2. 该用法示例:
将一个文件夹中的所有apk安装到设备中,脚本如下:
<img src="" alt="" />




版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

由一个HADOOP_HOME and hadoop.home.dir are unset报错引起的window环境连接调试远程hadoop的一系列问题

这篇准确来说不是搭建hadoop开发环境,而是指windows10连接到centos下hadoop集群进行开发遇到的一系列问题,仅此而已

由一个HADOOP_HOME and hadoop.home.dir are unset报错引起的window环境连接调试远程hadoop的一系列问题,hadoop版本 2.8

一、结论 先说结论。最后问题解决了。终于能在windows的eclipse上通过执行wordcount类,然后将某个文档内容处理后,将结果传到远程服务器的hadoop的某个文件夹下了。 二、当时的...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

关于bat的变量赋值和解析机制

下面的演示涉及几个知识点: 1. 如何把命令输出内容保存到变量中? 2. 多次改变变量值,为什么在for或是if的()中的无效,如何变通? 3. bat的function实现? ...
  • qidizi
  • qidizi
  • 2015-07-11 13:14
  • 7507

关于静态变量“赋值无效问题”的探讨结果

吐槽一下百度空间就是渣,换空间鸟。。。。 今天遇到一个关于静态变量“赋值”,值不变的问题。顿时觉得不可理解,很是奇怪 关于静态变量问题的探讨     在这里是static int num...

机器学习----分布问题(二元,多元变量分布,Beta,Dir)

机器学习----分布问题(二元,多元变量分布,Beta,Dir)       这涉及到数学的概率问题。       二元变量分布:          伯努利分布,就是0-...

ls 输出结果的逐条解释

ls 输出结果的逐条解释ls 命令的含义是list显示当前目录中的文件名字。注意不加参数它显示除隐藏文件外的所有文件及目录的名字。1)ls –a 显示当前目录中的所有文件,包含隐藏文件]# ls –a...

ls 输出结果的逐条解释

ls 命令的含义是list显示当前目录中的文件名字。注意不加参数它显示除隐藏文件外的所有文件及目录的名字。        1)ls –a 显示当前目录中的所有文件,包含隐藏文件 ]# ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)