16个与软件计算机相关的领域

A16Z是风投Andreessen Horowitz公司简称,日前在他们网站上刊登他们看好的16个与软件计算机相关的领域:16 Things | Andreessen Horowitz

1. Virtual Reality虚拟现实
VR达到一定水平可以欺骗你的大脑,让你相信你看到的是现实,研究表明,即使你没有真正站在陡峭的悬崖边,如果你要尝试跳跃,大腿会像灌了铅球一样,因为大脑底层不会让你这么做。

最近的微软的全息虚拟现实眼镜Microsoft HoloLens应该属于这个范畴。

2. 企业传感器化
我们不会再通过许多屏幕查看实时状态,传感器作为一个快捷链接,通知用户信息,接受用户指令动作;GPS会自动告诉手机的地址位置,自动加载出这个地理位置所决定的场景。

对于企业来说,传感器不再只是快捷链接,潜在可以替代文字输入,让我们聚焦更容易 有趣 富有创造力的事情。

3. 机器学习和大数据
大数据需要大计算,这就是Hadoop和Spark用武之地,大数据计算不再是政府机构和大型企业的专利,现在实时计算和学习随时随地到处都可以发生,在这里会诞生伟大的新公司。

4.完整堆栈的起步
老的创业公司是出售或贩卖许可证给那些软件研发公司(如Oracle卖中间件给中国一个集成商或开发商),新的full stack是建立一个 端到端提供完整的从产品到服务全覆盖,绕过那些集成商或竞争者。

一个好的例子就是Apple和微软,过去几年,微软建立了技术栈的各个片段,依赖合作伙伴提供半导体 用例 组装和零售等,而Apple做每件事,它们设计它们的芯片,它们自己的手机硬件,自己的OS,包括它们的应用。苹果提醒世界,如果你一次做很多事情,你就马上能创建一个真正的神奇体验。

Lyft 和 Uber建立软件使得出租车行业更加有效率(类似国内快的打车等等),过去他们试图敲开了出租车公司的大门,让他们使用自己的软件。这通常没有效果,出租车公司不会将软件作为竞争优势来考虑,他们也不愿意花费精力来评估软件。这样创业技术公司试图将技术和软件注入这个行业,这不会奏效。

Lyft 和 Uber则是认为:与其试图销售软件,不如我们基于现代软件建立整个服务。一旦他们将产品带给市场 消费者和司机,他们就会喜欢上它,基本就能接管整个行业,而这些公司在几千前还是创业小公司。

5.容器
代码的容器化是最终目的地,容器是隔离应用于底层硬件,它们和虚拟机(主机操作系统的克隆 在其中可单独运行应用程序)目标一样,但是它们提供更加裸奔的性能,因为没有虚拟层。

容器已经存在很长时间,最近因为一些原因火了,一个是因为Windows在数据中心变得不那么普遍,虚拟机缺点是不能运行多个操作系统,比如Linux上Windows;另外一个原因是微服务miroservice应用架构驱动了容器使用热情,这些应用架构特别适合容器,因为他们有离散的功能块,可单独扩展,如同乐高积木一样。

系统管理员们发现使用容器部署代码很容易,因为应用的每个部分都是一个单独 自我包容的实体,因为失败恢复 特征测试等等原因在多个主机上移动容器变得方便。

6.数字化医疗
过去大部分医疗器材是由会编程,但没有医学博士学位的人编写,然后由医学博士使用,他们通常不了解代码。仪器运作如同黑匣子。现在仪器越来越智能,医生当然会更高效。更复杂的仪器开始从专家手里转移到普通护士使用,也许以后每个人手机配件或应用程序都可以运行这些高精医疗软件。

另外一个是个人基因化,移动诊断普及化,身体产生的数据存储在我们的手机里,这些数据显示症状和身体情况的解释也许由手机上软件直接完成。

7. 在线市场
第一代网络公司像eBay和Craigslist获得横向市场的胜利,下一代在线市场有如下特点:
垂直市场定位,提供更好的细分目录服务,如“转租/临时”,“度假”,“拼车”。

下一代在线市场是移动为先,使得市场将全天营业。

由移动激活的特定市场分类将是人的市场,消费者将会发现更加体贴的服务,承包商将会发现更多机会。

市场将碎片化,动态服务于业务,比如大型基建设备的B2B租用。

8.安全化
安全工业有两件因素驱动:1.里面有坏家伙 2.新平台 云和移动已经启用。

9.比特币

10.云端-客户端计算Cloud-Client Computing

从集中式到分布式计算的循环,过去我们使用大型机时,终端的每个计算都运行在大型机上,终端只是显示,后来我们迁移到更加分布式的客服模型,诸如数据库计算在服务器端,而耗费CPU和图形等应用在客户端。

后来,我们迁移到Web,在网页或手机屏幕上显示,而计算在云端运行,这看上去是分布式,但是实际上是围绕云这个集中点,终端只是显示云端产生的玩意,终端只是一个接口而已。

现在智能手机处理器已经超过过去的大型计算机,为什么不将一些云中计算任务迁移到终端,在智能手机里运行?本地计算处理有好处,比如终端CPU内存要比服务器端便宜1000x倍,网络传输有的地方更昂贵,我们可以想象终端能够成为自己的数据中心或容器,利用大家闲置的CPU内存合作一起工作。

以前我们有客服模式,现在我们有了更加分布,云-本地计算 cloud-local computing或‘cloud/client computing’,目标是运行有状态的 智能应用,存储数据在终端,所有的和后端云同步,如果OS在终端我们自己就可以控制,没有人能够控制整件事。

终端不只是手机,可穿戴设备更小设备,能连接到网络的小设备等等。下一个世纪的计算是在这些上面做点事情处理。

11.众筹
口袋中有智能手机,我们就在任何时候通过众筹筹集到资金。

12.物联网
当普通的物体都变成可连接后会发生什么?物联网通过传感器将物体都能够连接到互联网。

13.在线视频
YouTube视频社区刚刚开始。

14.保险
软件将改变保险行业,

15.DevOps
DevOps是一个软件开发方法,强调沟通 协作 并集成软件开发人员和IT专家,因为软件开发和软件系统运营维护是相互依存的,DevOps旨在帮助组织企业迅速产生软件产品和服务,改善经营绩效。

16.失败
成功是新的失败。(注:这一条为凑够16这个数字吗?)

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值