关闭

leetcode-53-Maximum Subarray

标签: leetcodeDP分治
271人阅读 评论(0) 收藏 举报
分类:

                                                                      Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

最大子串和问题。求连续的子数组的最大和。


比较简单的方法,

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n=nums.size();
        int s=0;
        int max_=nums[0];
        for(int i=0;i<n;i++){
            s+=nums[i];
            if(max_<s) max_=s; // 如果大于最大值 就更新最大值
            if(s<0) s=0;              // s<0  就从下一个数开始 重新记数
        }
        return max_;
    }
};


DP  参考 七月算法-动态规划

dp[i]是以nums[i]结尾的最大子数组的和,

dp[i]=max(dp[i-1]+nums[i],nums[i])

最后的结果为dp[0~n-1]的最大值

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        int dp[n];// dp[i]是 以nums[i]结尾的最大子数组的和
        dp[0]=nums[0];
        int max_=nums[0];
        for(int i = 1;i < n;i++){
            dp[i] = max(dp[i-1]+nums[i],nums[i]);
            max_ = max(dp[i],max_);
        }
        return max_;
    }
};



空间优化

不用一位数组

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        int cur=nums[0];
        int max_=nums[0];
        for(int i = 1;i < n;i++){
            cur = max(cur+nums[i],nums[i]);
            max_ = max(cur,max_);
        }
        return max_;
    }
};
 



分治

把数组分成等长的两部分,最大子数组和要么在最左边,要么在右边,或跨越左右两边

int max(int a,int b){
    return a>b?a:b;
}

int merge(int* nums,int s,int t){
    if(s == t) return nums[t];
    int mid = (s + t) >> 1;
    int max_ = max(merge(nums,s,mid),merge(nums,mid + 1,t)); // s..mid 与 mid + 1..t的最大和
    int leftmax = nums[mid],rightmax = nums[mid + 1],cur;             // 即左右部分的最大和
    cur = leftmax;
    for(int i = mid - 1;i >= s;i--){ // 以mid结尾的 最大和
        cur += nums[i];
        leftmax = max(cur,leftmax);
    }
    cur = rightmax;
    for(int i = mid + 2;i <= t;i++){ // 以mid+1开始的 最大和
        cur += nums[i];
        rightmax = max(cur,rightmax);
    }
    return max(max_,leftmax + rightmax); // 返回最大和
}

int maxSubArray(int* nums, int numsSize) {
    return merge(nums,0,numsSize-1);
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:56881次
    • 积分:2031
    • 等级:
    • 排名:第18997名
    • 原创:148篇
    • 转载:11篇
    • 译文:0篇
    • 评论:0条