leetcode-53-Maximum Subarray

原创 2015年07月10日 16:47:29

                                                                      Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

最大子串和问题。求连续的子数组的最大和。


比较简单的方法,

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n=nums.size();
        int s=0;
        int max_=nums[0];
        for(int i=0;i<n;i++){
            s+=nums[i];
            if(max_<s) max_=s; // 如果大于最大值 就更新最大值
            if(s<0) s=0;              // s<0  就从下一个数开始 重新记数
        }
        return max_;
    }
};


DP  参考 七月算法-动态规划

dp[i]是以nums[i]结尾的最大子数组的和,

dp[i]=max(dp[i-1]+nums[i],nums[i])

最后的结果为dp[0~n-1]的最大值

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        int dp[n];// dp[i]是 以nums[i]结尾的最大子数组的和
        dp[0]=nums[0];
        int max_=nums[0];
        for(int i = 1;i < n;i++){
            dp[i] = max(dp[i-1]+nums[i],nums[i]);
            max_ = max(dp[i],max_);
        }
        return max_;
    }
};



空间优化

不用一位数组

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        int cur=nums[0];
        int max_=nums[0];
        for(int i = 1;i < n;i++){
            cur = max(cur+nums[i],nums[i]);
            max_ = max(cur,max_);
        }
        return max_;
    }
};
 



分治

把数组分成等长的两部分,最大子数组和要么在最左边,要么在右边,或跨越左右两边

int max(int a,int b){
    return a>b?a:b;
}

int merge(int* nums,int s,int t){
    if(s == t) return nums[t];
    int mid = (s + t) >> 1;
    int max_ = max(merge(nums,s,mid),merge(nums,mid + 1,t)); // s..mid 与 mid + 1..t的最大和
    int leftmax = nums[mid],rightmax = nums[mid + 1],cur;             // 即左右部分的最大和
    cur = leftmax;
    for(int i = mid - 1;i >= s;i--){ // 以mid结尾的 最大和
        cur += nums[i];
        leftmax = max(cur,leftmax);
    }
    cur = rightmax;
    for(int i = mid + 2;i <= t;i++){ // 以mid+1开始的 最大和
        cur += nums[i];
        rightmax = max(cur,rightmax);
    }
    return max(max_,leftmax + rightmax); // 返回最大和
}

int maxSubArray(int* nums, int numsSize) {
    return merge(nums,0,numsSize-1);
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

LeetCode(53) Maximum Subarray

题目Find the contiguous subarray within an array (containing at least one number) which has the larges...

leetcode刷题之旅——53. Maximum Subarray

本周写的第二道分治算法的题目,因为上次选择的是一道easy的题目,为了提升自己,这次选择了一道middle难度的题目。虽然这道题目是middle的,但是我还是想了很长时间。其实这道题目可以用动态规划直...

LeetCode 53. Maximum Subarray(dynamic programming)

题目链接:https://leetcode.com/problems/maximum-subarray/ 题目描述: Find the contiguous subarray within an ...

[LeetCode]53.Maximum Subarray

【题目】 Find the contiguous subarray within an array (containing at least one number) which has the l...

53.Maximum Subarray | LeetCode 解题思路

本题来源于LeetCode devide and conquer题库,难度easy。

Leetcode53 Maximum Subarray

Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whi...

Leetcode题解 - 53. Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest ...

[LeetCode] 53. Maximum Subarray

[LeetCode] 53. Maximum Subarray(Medium) 分治算法实践

leetcode-53:Maximum Subarray

声明: 1、本文仅为学习笔记,不得商用 2、文中所引文献,已在参考资料中说明,但部分来源于网络,出处无可考究,如果文中引用了您的原创,请您私信我 3、如果内容有错误或者不准确的地方请大家指...

leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法

Maximum Subarray  Find the contiguous subarray within an array (containing at least one number) w...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)