开始学习Andrew Ng的机器学习课程了,这里是学习的记录。

原创 2015年11月19日 23:35:35

刚开始学习,希望能够坚持下去。

学习笔记除手写内容外将会保存在这。

相关文章推荐

Andrew Ng机器学习课程WEEK2作业

  • 2017年11月04日 21:32
  • 589KB
  • 下载

Andrew Ng 机器学习课程中文笔记

  • 2016年11月09日 22:57
  • 10.99MB
  • 下载

Andrew Ng的机器学习课程概述(二)

主要算法是神经网络和svm,并且有一些特殊的优化技巧

Andrew Ng机器学习课程10补充

Andrew Ng机器学习课程10补充VC dimension讲到了如果通过最小化训练误差,使用一个具有d个参数的hypothesis class进行学习,为了学习好,一般需要参数d的线性关系个训练样...

斯坦福大学公开课 :机器学习课程(Andrew Ng)——1、整体看一看

============================================================================【课程综述】==================...
  • mmc2015
  • mmc2015
  • 2015年01月02日 15:45
  • 2202

斯坦福大学公开课机器学习课程(Andrew Ng)三欠拟合与过拟合

概要 本节课的主要内容有: 1、  局部加权回归:线性回归的变化版本 2、  概率解释:另一种可能的对于线性回归的解释 3、  Logistic回归: 基于2的分类算法,也是第一个要学的分类算...

Stanford机器学习课程(Andrew Ng) Week 1 Parameter Learning --- 梯度下降法

随机梯度下降是很常用的算法,他不仅被用在线性回归上,实际上被应用于机器学习领域中的众多领域。 本节我们可以用这种算法来将代价函数最小化 我们想要使用梯度下降算法得到 θ0和θ1来使代价函数J(...

Andrew Ng机器学习课程笔记--week5(上)

Neural Networks: Learning 内容较多,故分成上下两篇文章。一、内容概要 Cost Function and Backpropagation Cost Function Ba...

Andrew NG机器学习课程笔记(十一)

Andrew NG 机器学习课程笔记(三)

欠拟合与过拟合、局部加权回归、logistic回归     1.欠拟合与过拟合 当假设空间含有不同复杂度(例如,不同的参数个数)的模型时,就要面临模型选择的问题,我们希望选择或学习一个合适的模...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:开始学习Andrew Ng的机器学习课程了,这里是学习的记录。
举报原因:
原因补充:

(最多只允许输入30个字)