Going Home - POJ 1295 KM算法

原创 2015年07月06日 20:47:12

Going Home
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 19296   Accepted: 9810

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man. 

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28

题意:每个人m需要到一个家H里,一个人走一个单位的花费为1,求最小的花费总和。

思路:裸KM算法,其实费用流也是可以的。

参考:http://www.cnblogs.com/skyming/archive/2012/02/18/2356919.html

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
using namespace std;
int n,m,w[110][110],nx,ny,x1[110],y1[110],x2[110],y2[110],INF=1e9;
int lx[110],ly[110],linky[110],slack[110];
bool visx[110],visy[110];
char s[110][110];
bool Find(int x)
{
    int y,t;
    visx[x]=1;
    for(y=1;y<=ny;y++)
       if(!visy[y])
       {
           t=lx[x]+ly[y]-w[x][y];
           if(t==0)
           {
               visy[y]=1;
               if(linky[y]==-1 || Find(linky[y]))
               {
                   linky[y]=x;
                   return true;
               }
           }
           else if(slack[y]>t)
             slack[y]=t;
       }
    return false;
}
int KM()
{
    int i,j,k,x,y,d,ans=0;
    memset(linky,-1,sizeof(linky));
    memset(ly,0,sizeof(ly));
    for(i=1;i<=nx;i++)
    {
        lx[i]=-INF;
        for(j=1;j<=ny;j++)
           lx[i]=max(lx[i],w[i][j]);
    }
    for(i=1;i<=nx;i++)
    {
        for(j=1;j<=ny;j++)
           slack[j]=INF;
        while(true)
        {
            memset(visx,0,sizeof(visx));
            memset(visy,0,sizeof(visy));
            if(Find(i))
              break;
            d=INF;
            for(j=1;j<=ny;j++)
               if(!visy[j] && d>slack[j])
                 d=slack[j];
            for(j=1;j<=nx;j++)
               if(visx[j])
                 lx[j]-=d;
            for(j=1;j<=ny;j++)
               if(visy[j])
                 ly[j]+=d;
               else
                 slack[j]-=d;
        }
    }
    for(j=1;j<=ny;j++)
      if(linky[j]>-1)
        ans+=w[linky[j]][j];
    return ans;
}
int main()
{
    int i,j,k,ans;
    while(~scanf("%d%d",&n,&m) && n+m)
    {
        for(i=1;i<=n;i++)
           scanf("%s",s[i]+1);
        nx=ny=0;
        for(i=1;i<=n;i++)
           for(j=1;j<=m;j++)
              if(s[i][j]=='H')
              {
                  nx++;
                  x1[nx]=i;y1[nx]=j;
              }
              else if(s[i][j]=='m')
              {
                  ny++;
                  x2[ny]=i;y2[ny]=j;
              }
        for(i=1;i<=nx;i++)
           for(j=1;j<=ny;j++)
              w[i][j]=-abs(x1[i]-x2[j])-abs(y1[i]-y2[j]);
        ans=KM();
        printf("%d\n",-ans);
    }
}


HDU 2255 奔小康赚大钱 POJ 2195 Going Home 最大权完美匹配 KM算法

两道KM算法模板题 可以作为求最大完美匹配模板 一个是求最大权,一个求最小权 ,最小权可以将所有的边权取相反数,求得最大权之后再取反。 HDU 2255代码: /*------------------...

poj2195Going Home(费用流或KM算法)

这道题目是比较简单的模板题,我用了两种方法写了一下,需要注意的是用KM算法写的时候,因为这个算法本身求得是二分图最大权匹配,而这道题求的是最小,那么应该在加边的时候把权值乘负一#include #i...

【POJ 2195】 Going Home(KM算法求最小权匹配)

【POJ 2195】 Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65...

POJ 2195 Going Home 费用流模版题(附KM算法,转)

题意: 给出一个n*m的图,其中m是人,H是房子,每个人移动一步需要一块,问所有人移动到房子里的最少花费。 建图: 建立一个超级源点和超级汇点,S=0,T=2*num+1。 从源点到所有的人建立一条流...

POJ - 2195 Going Home (构图 最大匹配KM算法)

题目:http://poj.org/problem?id=2195 题意:

poj 2195 Going Home(二分图最优匹配KM算法)

Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21805   Accepted: 1103...

POJ 2195 Going Home (二分图最大权匹配、KM算法)

题意:给你一张图,图上有n个人和n座房子,每个人需要回到一所房子,要求路程之和最小。 ...H.... ...H.... ...H.... mmmHmmmm ...H.... ...H.....
  • Tsaid
  • Tsaid
  • 2011年10月05日 20:39
  • 1209

POJ-2195 Going Home (最小费用最大流初学 && 最大权二分匹配—KM算法)

Going Home 最小费用最大流 && 最大权二分匹配,两种解法 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:...

POJ 2195 Going Home(最小权匹配、KM算法)

题目链接: POJ 2195 Going Home 题意: 给出一个r*c的矩阵,字母H代表房屋,字母m代表客人,房屋的数量和客人的数量相同。每间房只能住一个人。求这些客人全部住进客房的最少移动...
  • Ramay7
  • Ramay7
  • 2016年05月04日 20:29
  • 191

HDU 1533 && poj 2195 Going Home KM算法

Description On a grid map there are n little men and n houses. In each unit time, every little man ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Going Home - POJ 1295 KM算法
举报原因:
原因补充:

(最多只允许输入30个字)