poj 3177 Redundant Paths(求最少加几条边将图变为边双连通图)

原创 2015年11月21日 11:34:17

Redundant Paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11145   Accepted: 4774

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:
   1   2   3
   +---+---+  
       |   |
       |   |
 6 +---+---+ 4
      / 5
     / 
    / 
 7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
   1   2   3
   +---+---+  
   :   |   |
   :   |   |
 6 +---+---+ 4
      / 5  :
     /     :
    /      :
 7 + - - - - 
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7

Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

Source



#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>

typedef long long ll;
#define eps 1e-8

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)
#define bug printf("hi"\n)
using namespace std;
#define INF 0x3f3f3f3f
#define N 10005

int dfn[N],low[N],belong[N],head[N],num;
int degree[N];
bool instack[N];
stack<int>s;

int n,m;
int all;
int Time;

struct stud{
   int to,ne;
}e[N*2];

inline void add(int u,int v)
{
	e[num].to=v;
	e[num].ne=head[u];
	head[u]=num++;
}

void dfs(int u,int fa)
{
     dfn[u]=low[u]=++Time;
     instack[u]=true;
     s.push(u);
	 for(int i=head[u];i!=-1;i=e[i].ne)
	 {
		 if(i==(fa^1)) continue;
         int to=e[i].to;
		 if(dfn[to]==-1)
		 {
			 dfs(to,i);
			 low[u]=min(low[u],low[to]);
		 }
		 else if(instack[to])
			    low[u]=min(low[u],low[to]);
	 }
	 if(dfn[u]==low[u])
	 {
		 all++;
		 int cur;
		 do{
            cur=s.top();
            s.pop();
			belong[cur]=all;
		 }while(cur!=u);
	 }
}

int main()
{
	int i,j;
	while(~scanf("%d%d",&n,&m))
	{
		 memset(head,-1,sizeof(head));
		 num=0;
		 int u,v;
		 while(m--)
		 {
            scanf("%d%d",&u,&v);
			add(u,v);
			add(v,u);
		 }
         memset(dfn,-1,sizeof(dfn));
         memset(low,-1,sizeof(low));
         all=0;
		 Time=0;
		 while(!s.empty())s.pop();
		 for(i=1;i<=n;i++)
			 if(dfn[i]==-1) dfs(i,-1);
         memset(degree,0,sizeof(degree));
		 for(i=1;i<=n;i++)
		 {
			 for(j=head[i];j!=-1;j=e[j].ne)
			 {
				 int to=e[j].to;
				 if(belong[to]!=belong[i])
					 degree[belong[to]]++;
			 }
		 }
		 int ans=0;
		 for(i=1;i<=n;i++)
			 if(degree[i]==1) ans++;
		printf("%d\n",(ans+1)/2);
	}
	return 0;
}









版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ3177-Redundant Paths

转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6762432   大致题意:        为了保护放牧环境,避免...
  • lyy289065406
  • lyy289065406
  • 2011年09月09日 09:17
  • 5216

POJ - 3177 Redundant Paths(强连通分量)

题目大意:给出一张无向图,如果要让每两点之间都有两条不同的路径可以相互到达,问至少还要添加几条边解题思路:添加的边的数量就是(入度为1的点 + 1) /2,也就是所有连通分量缩图后,形成的树的(叶子结...
  • L123012013048
  • L123012013048
  • 2015年08月16日 00:27
  • 496

poj3177 - Redundant Paths

想看更多的解题报告: http://blog.csdn.net/wangjian8006/article/details/7870410                              ...
  • wangjian8006
  • wangjian8006
  • 2012年09月18日 10:33
  • 2885

POJ-3177 Redundant Paths (边双连通分量[Tarjan])

点双连通分量:不存在割点的连通分量 边双连通分量:不存在桥的连通分量(即任意两点互相可达的路径有不同的两条) 大致方法:可以求出所有的桥,把桥删掉。然后把所有的边双连通分量求出来,显然这些边双连通分...
  • idealism_xxm
  • idealism_xxm
  • 2016年04月24日 09:19
  • 407

poj3177Redundant Paths【构造双连通分量:并查集缩点 模板】

这个题就是问加几条边可以构成双连通分量,一开始图样图森破的以为只是求桥的个数就好,然而并非如此…… 构造双连通分量的加边数=(原图的叶节点数+1)/2    因为双连通分量需要成环嘛,原图已经是连着的...
  • zhou_yujia
  • zhou_yujia
  • 2015年11月20日 10:12
  • 607

POJ 3177 Redundant Paths(边双联通图)

Description In order to get from one of the F (1
  • u013582254
  • u013582254
  • 2015年01月29日 19:55
  • 764

poj3177-tarjan求桥/割边

题目大意:有F个牧场,1 给定现有的R条直接连接两个牧场的路,F-1 若low[v]>dfn[u],则(u,v)为割边。但是实际处理时我们并不这样判断,因为有的图上可能有重边,这样不好处理...
  • zhang20072844
  • zhang20072844
  • 2012年11月04日 13:14
  • 5544

(POJ 3352)无向图的边双连通分量模板题 + 在一个图中最少加几条边可以使得图边双连通

Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11779 Acc...
  • STILLxjy
  • STILLxjy
  • 2017年04月20日 20:07
  • 500

poj 3177 Redundant Paths

tihttp://poj.org/problem?id=3177
  • u012845138
  • u012845138
  • 2014年05月05日 17:30
  • 447

POJ,3177 Redundant Paths

题意:奶牛要在n个牧场中转移,奶牛们厌倦了只有一条路可以走,所以请你来加最少的路,让牧场之间不止有一条固定的通路。 思路:构造双连通图的问题,可以看下面的文章了解一下概念: https://www...
  • s1054436218
  • s1054436218
  • 2017年05月08日 18:27
  • 86
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 3177 Redundant Paths(求最少加几条边将图变为边双连通图)
举报原因:
原因补充:

(最多只允许输入30个字)