# poj 3177 Redundant Paths(求最少加几条边将图变为边双连通图)

Redundant Paths
 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11145 Accepted: 4774

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:
   1   2   3
+---+---+
|   |
|   |
6 +---+---+ 4
/ 5
/
/
7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
   1   2   3
+---+---+
:   |   |
:   |   |
6 +---+---+ 4
/ 5  :
/     :
/      :
7 + - - - - 
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7

Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

Source

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>

typedef long long ll;
#define eps 1e-8

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)
#define bug printf("hi"\n)
using namespace std;
#define INF 0x3f3f3f3f
#define N 10005

int degree[N];
bool instack[N];
stack<int>s;

int n,m;
int all;
int Time;

struct stud{
int to,ne;
}e[N*2];

{
e[num].to=v;
}

void dfs(int u,int fa)
{
dfn[u]=low[u]=++Time;
instack[u]=true;
s.push(u);
{
if(i==(fa^1)) continue;
int to=e[i].to;
if(dfn[to]==-1)
{
dfs(to,i);
low[u]=min(low[u],low[to]);
}
else if(instack[to])
low[u]=min(low[u],low[to]);
}
if(dfn[u]==low[u])
{
all++;
int cur;
do{
cur=s.top();
s.pop();
belong[cur]=all;
}while(cur!=u);
}
}

int main()
{
int i,j;
while(~scanf("%d%d",&n,&m))
{
num=0;
int u,v;
while(m--)
{
scanf("%d%d",&u,&v);
}
memset(dfn,-1,sizeof(dfn));
memset(low,-1,sizeof(low));
all=0;
Time=0;
while(!s.empty())s.pop();
for(i=1;i<=n;i++)
if(dfn[i]==-1) dfs(i,-1);
memset(degree,0,sizeof(degree));
for(i=1;i<=n;i++)
{
{
int to=e[j].to;
if(belong[to]!=belong[i])
degree[belong[to]]++;
}
}
int ans=0;
for(i=1;i<=n;i++)
if(degree[i]==1) ans++;
printf("%d\n",(ans+1)/2);
}
return 0;
}



• 本文已收录于以下专栏：

## POJ3177-Redundant Paths

• lyy289065406
• 2011年09月09日 09:17
• 5216

## POJ - 3177 Redundant Paths(强连通分量)

• L123012013048
• 2015年08月16日 00:27
• 496

## poj3177 - Redundant Paths

• wangjian8006
• 2012年09月18日 10:33
• 2885

## POJ-3177 Redundant Paths （边双连通分量[Tarjan]）

• idealism_xxm
• 2016年04月24日 09:19
• 407

## poj3177Redundant Paths【构造双连通分量：并查集缩点 模板】

• zhou_yujia
• 2015年11月20日 10:12
• 607

## POJ 3177 Redundant Paths(边双联通图）

Description In order to get from one of the F (1
• u013582254
• 2015年01月29日 19:55
• 764

## poj3177-tarjan求桥/割边

• zhang20072844
• 2012年11月04日 13:14
• 5544

## （POJ 3352）无向图的边双连通分量模板题 + 在一个图中最少加几条边可以使得图边双连通

Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11779 Acc...
• STILLxjy
• 2017年04月20日 20:07
• 500

## poj 3177 Redundant Paths

tihttp://poj.org/problem?id=3177
• u012845138
• 2014年05月05日 17:30
• 447

## POJ，3177 Redundant Paths

• s1054436218
• 2017年05月08日 18:27
• 86

举报原因： 您举报文章：poj 3177 Redundant Paths(求最少加几条边将图变为边双连通图) 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)