poj 3177 Redundant Paths(求最少加几条边将图变为边双连通图)

原创 2015年11月21日 11:34:17

Redundant Paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11145   Accepted: 4774

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:
   1   2   3
   +---+---+  
       |   |
       |   |
 6 +---+---+ 4
      / 5
     / 
    / 
 7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
   1   2   3
   +---+---+  
   :   |   |
   :   |   |
 6 +---+---+ 4
      / 5  :
     /     :
    /      :
 7 + - - - - 
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7

Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

Source



#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>

typedef long long ll;
#define eps 1e-8

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)
#define bug printf("hi"\n)
using namespace std;
#define INF 0x3f3f3f3f
#define N 10005

int dfn[N],low[N],belong[N],head[N],num;
int degree[N];
bool instack[N];
stack<int>s;

int n,m;
int all;
int Time;

struct stud{
   int to,ne;
}e[N*2];

inline void add(int u,int v)
{
	e[num].to=v;
	e[num].ne=head[u];
	head[u]=num++;
}

void dfs(int u,int fa)
{
     dfn[u]=low[u]=++Time;
     instack[u]=true;
     s.push(u);
	 for(int i=head[u];i!=-1;i=e[i].ne)
	 {
		 if(i==(fa^1)) continue;
         int to=e[i].to;
		 if(dfn[to]==-1)
		 {
			 dfs(to,i);
			 low[u]=min(low[u],low[to]);
		 }
		 else if(instack[to])
			    low[u]=min(low[u],low[to]);
	 }
	 if(dfn[u]==low[u])
	 {
		 all++;
		 int cur;
		 do{
            cur=s.top();
            s.pop();
			belong[cur]=all;
		 }while(cur!=u);
	 }
}

int main()
{
	int i,j;
	while(~scanf("%d%d",&n,&m))
	{
		 memset(head,-1,sizeof(head));
		 num=0;
		 int u,v;
		 while(m--)
		 {
            scanf("%d%d",&u,&v);
			add(u,v);
			add(v,u);
		 }
         memset(dfn,-1,sizeof(dfn));
         memset(low,-1,sizeof(low));
         all=0;
		 Time=0;
		 while(!s.empty())s.pop();
		 for(i=1;i<=n;i++)
			 if(dfn[i]==-1) dfs(i,-1);
         memset(degree,0,sizeof(degree));
		 for(i=1;i<=n;i++)
		 {
			 for(j=head[i];j!=-1;j=e[j].ne)
			 {
				 int to=e[j].to;
				 if(belong[to]!=belong[i])
					 degree[belong[to]]++;
			 }
		 }
		 int ans=0;
		 for(i=1;i<=n;i++)
			 if(degree[i]==1) ans++;
		printf("%d\n",(ans+1)/2);
	}
	return 0;
}









版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ3177.Redundant Paths——增加多少条边使原图变为边双连通图

http://poj.org/problem?id=3177题目描述: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走。现已有m条路,求至少要新建多少条路,使得任...

POJ 3177--Redundant Paths【无向图增加最少的边成为边双连通图 && tarjan求ebc && 缩点构造缩点树】

Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10798   Accepted:...
  • hpuhjh
  • hpuhjh
  • 2015年08月18日 15:13
  • 790

POJ 3352 Road Construction POJ 3177 Redundant Paths(边双连通图 Tarjan+缩点)

POJ 3352 Road Construction POJ 3177 Redundant Paths(边双连通图 Tarjan+缩点) ACM 题目地址:  POJ 3352 Road...
  • hcbbt
  • hcbbt
  • 2014年08月15日 11:22
  • 1030

poj 3177 Redundant Paths 【无向图增加最少的边是图成为边—双连通】【tarjan求EBC + 缩点 统计度数为1的EBC】

 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 104...

poj 3177 Redundant Paths(构造边双连通)

Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7598  ...
  • WEYuLi
  • WEYuLi
  • 2013年08月18日 17:39
  • 494

poj 3177 Redundant Paths 【图论-边双连通】

Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Description In order t...

[POJ 3177]Redundant Paths[边双连通][Tarjan][缩点]

题目链接:[POJ 3177]Redundant Paths[边双连通][Tarjan][缩点] 题意分析: 给出一幅含有重边的无向图,问至少连多少条边,使得图中任意两个点u、v都有u->v的路径...

POJ 3177 Redundant Paths 图的强连通

Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11137   Accepted:...

[POJ3177]Redundant Paths 边双连通分量 做题笔记

题目来源:http://poj.org/problem?id=3177 解题思路:http://www.cnblogs.com/frog112111/p/3367039.html 分析:在同一个...
  • mhlwsk
  • mhlwsk
  • 2016年03月08日 23:06
  • 520

【POJ】3177 Redundant Paths 边连通

Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8849 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 3177 Redundant Paths(求最少加几条边将图变为边双连通图)
举报原因:
原因补充:

(最多只允许输入30个字)