关闭

LeetCode:Factorial Trailing Zeroes

标签: leetcodejava
137人阅读 评论(0) 收藏 举报
分类:

问题描述:

Given an integer n, return the number of trailing zeroes in n!.

计算n!中0的个数。

思路:

对n!做质因数分解n!=2x*3y*5z*...

显然0的个数等于min(x,z),并且min(x,z)==z

证明:

对于阶乘而言,也就是1*2*3*...*n
[n/k]代表1~n中能被k整除的个数
那么很显然
[n/2] > [n/5] (左边是逢2增1,右边是逢5增1)
[n/2^2] > [n/5^2](左边是逢4增1,右边是逢25增1)
……
[n/2^p] > [n/5^p](左边是逢2^p增1,右边是逢5^p增1)
随着幂次p的上升,出现2^p的概率会远大于出现5^p的概率。
因此左边的加和一定大于右边的加和,也就是n!质因数分解中,2的次幂一定大于5的次幂

JAVA代码:

public class Solution {
    public int trailingZeroes(int n) {
        if(n < 0) return 0;
        int cnt = 0;
        while(n != 0){
            cnt += n / 5;
            n /= 5;
        }
        return cnt;
    }
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:123854次
    • 积分:4419
    • 等级:
    • 排名:第7027名
    • 原创:341篇
    • 转载:33篇
    • 译文:0篇
    • 评论:5条
    最新评论