迭代加深搜索
迭代加深搜索(Iterative Deepening Depth-First Search, IDDFS)经常用于理论上解答树深度上没有上界的问题,这类问题通常要求出满足某些条件时的解即可。比如在“埃及分数”问题中要求将一个分数a/b分解成为若干个形如1/d的加数之和,而且加数越少越好,如果加数个数相同,那么最小的分数越大越好。下面总结一下该方法的一般流程:
(1)概述:迭代加深搜索是通过限制每次dfs的最大深度进行的搜索。令maxd表示最大的搜索深度,那么dfs就只能在0~maxd之间来进行,如果在这个范围内找到了解,就退出大循环,否则maxd++,扩大搜索范围。但可想而知,倘若没有高效及时的退出无解的情况,那么时间上的开销也是会比较大的。这时就需要进行“剪枝”操作,及时地判断此时能否找到解。对于迭代加深搜索,经常通过设计合适的“乐观估价函数”来判断能否剪枝。设当前搜索的深度是cur,乐观估价函数是h(),那么当cur+h()>maxd时就需要剪枝。
那么什么是乐观估价函数呢?简单的说就是从当前深度到找到最终的解“至少”还需要多少步,或者距离找到最终的解还需要扩展多少层。如果超出了当前限制的深度maxd,说明当前限制的最大深度下是不可能找到解的,直接退出。比如像前面的“埃及分数”问题,要拆分19/45这样的一个分数,假设当前搜索到了第三层,得到19/45=1/5+1/100...那么根据题意此时最大的分数为1/101,而且如果需要凑够19/45,需要(19/45-1/5-1/100)*101=23个1/101才行。即从第3层还要向下扩展至少大于23层的深度才可能找到所有的解。所以如果此时的maxd<23&