关闭

二叉树前中后序遍历(递归)

标签: 递归二叉树
379人阅读 评论(0) 收藏 举报
分类:

中途对于递归总是理不清,后来看了代码和书才想通:

这里写图片描述

递归==递+归:必须要有递归结束条件,可以不是返回值,若调用一个递归的主算法为第0层算法,则从主算法调用递归算法为进入第1层调用,从第i层递归调用本算法为进入第i+1层,反之,退出第i层递归调用,则返回至第i-1层调用,简单讲:就是当第i+1层达到了递归结束条件,就会回到第i层递归(当时一直认为直接执行到第i+1层,就不再返回了。呵呵),为了保证递归调用正确执行,系统要建立递归调用工作栈。每一层递归调用所需的信息构成一个工作记录,其中,包括所有实参指针,所有局部变量以及返回上一层的地址

#include<iostream>
using namespace std;
template<class T>
struct BinaryTreeNode
{
    BinaryTreeNode* _left;
    BinaryTreeNode* _right;
    T _data;
    BinaryTreeNode(const T& x)
        :_left (NULL)
        ,_right (NULL)
        ,_data (x)
    {}
};

template<class T>
class BinaryTree 
{
public:
    BinaryTree()
        :_root(NULL)
    {}
    BinaryTree(const T* a,size_t size)
    {  
        size_t index = 0;
        _root = _CreateTree(a,size,index);//构建树
    }

    BinaryTree (const BinaryTree<T>& s)
        :_root ->_left(s._root ->_left )
        ,_root ->_right(s._root ->_right )
        ,_root ->_data(s._root ->_data )
    {
        s._root ->_left = NULL;
        s._root ->_right = NULL;
    }

    size_t size()
    {
        return _size(_root);
    }

    size_t Depth()
    {
        return _Depth(_root);
    }

    size_t leafSize()
    {
        return _leafSize(_root);
    }

    void prevorder()//前序遍历《根左右》
    {
        _prevorder(_root); 
        cout <<endl;
    }

    void Inorder()//中序遍历《左根右》
    {
        _Inorder(_root);
        cout<<endl;
    }

    void postorder()//后序遍历《左右根》
    {
        _postorder(_root);
        cout<<endl;
    }
public:
    BinaryTreeNode<T>* _CreateTree(const T* a,size_t size,size_t& index)
    {  
        BinaryTreeNode<T>* root = NULL;
        if(a[index] != '#'&& index < size)
        {
            root = new BinaryTreeNode<T>(a[ index ]);//创建树节点
            root->_left = _CreateTree(a,size,++index);
            root->_right = _CreateTree(a,size,++index);

        }
        return root;
    }

    size_t _size(BinaryTreeNode<T>* root)//节点个数
    {
        if(root == NULL)
        {
            return 0;
        }
        return (_size( root->_left ))+(_size ( root->_right ))+1;//每递归一次都加上他的上个节点,也就是根节点。所以只加一
    }

    size_t _Depth(BinaryTreeNode<T>* root)//树的深度
    {
        if(root == NULL)
            return 0;
        size_t a = _Depth (root->_left )+1;
        siez_t b = _Depth (root->_right)+1;
        return a>b?a:b;
    }

    size_t _leafSize(BinaryTreeNode<T>* root)  //叶个数
    {
        if(root == NULL)
            return 0;
        else if(root->_left  ==NULL && root->_right == NULL )
            return 1;
        else
            return _leafSize(root ->_left)+_leafSize (root->_right );
    }

    void _prevorder(BinaryTreeNode<T>* root)
    {
        if(root == NULL)
            return ;
        cout<<root->_data <<" ";
        _prevorder(root->_left );
        _prevorder(root->_right );

    }

    void _Inorder(BinaryTreeNode<T>* root)
    {
        if(root != NULL)
        {
            _Inorder(root->_left );
            cout<<root->_data <<" ";
            _Inorder(root->_right );
        }
    }

    void _postorder(BinaryTreeNode<T>* root)
    {
        if(root != NULL )
        {
            _postorder(root->_left );
            _postorder(root->_right );
            cout<<root->_data <<" ";
        }
    }

protected:
    BinaryTreeNode<T>* _root;

};
int main()
{  
    int a1[9]={1,2,3,'#',4,'#','#',5, 6};
    int a2[15] = {1,2,'#',3,'#','#',4,5,'#',6,'#',7,'#','#',8};
    BinaryTree<int> bt(a1,9);
    bt.prevorder ();
    bt.Inorder ();
    bt.postorder ();
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:33806次
    • 积分:957
    • 等级:
    • 排名:千里之外
    • 原创:63篇
    • 转载:16篇
    • 译文:0篇
    • 评论:0条
    文章分类