任意竞赛图都有哈密顿path(A Tournament has a Hamiltonian path)

本文证明了在竞赛图中一定存在哈密顿path。通过反证法,假设存在最长的path P,然后分析在图中添加不在P中的节点a的情况,推导出矛盾,从而得出结论。此外,还给出了找到哈密顿path的一种迭代算法策略。
摘要由CSDN通过智能技术生成

Prop. 设G是竞赛图,即完全图的一个定向。则G必有哈密顿path.

证明
反证。设n=|V|, 且 P={ 1,2,3,,k}(k<n) 是G中的最长path.
则对任取的 aP , 我们有下图
这里写图片描述
如果 a1

题目中提到的“directed hamilton path”是指有向中存在一条径,该径经过中的每个顶点恰好一次,并且按照给定的方向遍历。下面将使用300字的中文回答这个问题。 每个锦标赛都有一个有向哈密顿径是可能的。在锦标赛中,选手的比赛结果可以表示为有向中的有向边。每个选手对应中的一个顶点,而比赛的结果对应中的有向边。在锦标赛中,每个选手都会与其他选手进行一场比赛,因此每个顶点都会有一条出边和一条入边。 为了证明每个锦标赛都有一个有向哈密顿径,我们可以使用归纳法来说明。 首先考虑只有两个选手的情况。在这种情况下,只有一场比赛,所以我们可以从其中一个选手的顶点出发,依次经过另一个选手的顶点,形成一个有向哈密顿径。 接下来,假设对于任意有n个选手的情况,锦标赛都有一个有向哈密顿径。现在考虑有n+1个选手的情况。我们可以将其中一个选手标记为参赛选手A,其余的n个选手标记为B1,B2,...,Bn。 考虑剔除参赛选手A后的锦标赛。根据归纳假设,这个剩余的锦标赛有一个有向哈密顿径。在这条径中,每个选手B1,B2,...,Bn都会被遍历到。现在我们只需要将参赛选手A的顶点插入到这个径中,使其与剩余的径相连即可。这样就构成了一个有向哈密顿径,该径从参赛选手A开始,然后经过剩余的锦标赛,最后回到参赛选手A的顶点。 综上所述,每个锦标赛都有一个有向哈密顿径。无论是只有两个选手还是更多的选手,我们都可以通过归纳法证明这个结论。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值