GYM 101128 A.Promotions(dfs)

本文介绍了一种解决特定员工提拔问题的方法,通过构建有向图并利用DFS算法确定不同提拔区间下必需及不可提拔的员工数量。

Description
给出一张n个点的有向图表示一家有n个员工的公司的隶属图,u->v表示u是v的上司,现在老板要提拔一些人,但是规定如果一个员工被提拔,那么他的上司也要被提拔,现给出两个整数a和b表示一区间,求三个值,第一个值表示如果提拔a个人那么这n个中必须要被提拔的人数,第二个值表示如果提拔b个人那么这n个人中必须要被提拔的人数,第三个值表示就算提拔b个人也不会被提拔的人数
Input
第一行四个整数n,m,a,b分别表示人数,关系数以及提拔的人数区间,之后m行每行两个整数u和v表示u是v的上司(2<=n<=5000,1<=m<=10000,1<=a < b < n)
Output
输出三个要求的值
Sample Input
3 4 7 8
0 4
1 2
1 5
5 2
6 4
0 1
2 3
4 5
Sample Output
2
4
3
Solution
前两个值是同种求法,假设要提拔x个人2,那么一个人是必须被提拔的意思是如果不提拔这个人,那么所有被其支配的人不会被提拔,而剩下的人数不够x,所以对原图从每个点开始dfs,所有被其支配的点打上时间戳便于统计(不然可能会重),计算出每个点的num值表示其支配的人数(包括自身),如果n-num[i] < x说明只选拔x个人时i必须要被提拔
对于第三个值,在提拔b个人的条件下,一个人一定不会被提拔的意思是如果提拔这个人那么需要提拔他的一系列上司,而这些人的数量已经超过b了,所以对反图进行上述同样的dfs操作,得到的每个点的num值表示要提拔这个人至少要提拔的人数,如果num[i] > b说明这个人一定不会被提拔
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 5555
int a,b,n,m,num[maxn],vis[maxn];
vector<int>g[maxn],gg[maxn];
int dfs1(int u,int fa)
{
    if(vis[u]==fa+1)return 0;
    vis[u]=fa+1;
    int ans=1;
    for(int i=0;i<g[u].size();i++)ans+=dfs1(g[u][i],fa);
    return ans;
}
int dfs2(int u,int fa)
{
    if(vis[u]==fa+1)return 0;
    vis[u]=fa+1;
    int ans=1;
    for(int i=0;i<gg[u].size();i++)ans+=dfs2(gg[u][i],fa);
    return ans;
}
int main()
{
    while(~scanf("%d%d%d%d",&a,&b,&n,&m))
    {
        for(int i=0;i<n;i++)g[i].clear(),gg[i].clear();
        while(m--)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            g[u].push_back(v),gg[v].push_back(u);
        }
        memset(vis,0,sizeof(vis));
        for(int i=0;i<n;i++)num[i]=dfs1(i,i);
        int ans1=0,ans2=0,ans3=0;
        for(int i=0;i<n;i++)
        {
            if(n-num[i]<a)ans1++;
            if(n-num[i]<b)ans2++;
        }
        memset(vis,0,sizeof(vis));
        for(int i=0;i<n;i++)num[i]=dfs2(i,i);
        for(int i=0;i<n;i++)
            if(num[i]>b)ans3++;
        printf("%d\n%d\n%d\n",ans1,ans2,ans3);
    }
    return 0;
}
### 使用 `gym.spaces.Box` 定义动作空间 在OpenAI Gym环境中定义连续的动作空间通常会使用到 `gym.spaces.Box` 类。此类允许创建一个多维的盒子形状的空间,其边界由低限(low)和高限(high)参数指定[^1]。 对于给定的例子,在类 `ActionSpace` 中静态方法 `from_type` 返回了一个基于输入类型的行动空间实例: 当 `space_type` 是 `Continuous` 时,返回的是一个三维向量形式的动作空间对象,该对象表示三个维度上的取值范围分别为 `[0.0, 1.0]`, `[0.0, 1.0]`, 和 `[-1.0, 1.0]` 的实数集合,并且数据类型被设定为了 `np.float32`: ```python import numpy as np import gym class ActionSpace: @staticmethod def from_type(action_type: int): space_type = ActionSpaceType(action_type) if space_type == ActionSpaceType.Continuous: return gym.spaces.Box( low=np.array([0.0, 0.0, -1.0]), high=np.array([1.0, 1.0, 1.0]), dtype=np.float32, ) ``` 此段代码展示了如何通过传递最低限度(`low`)数组以及最高限度(`high`)数组来初始化一个新的Box实例,从而构建出一个具有特定界限的多维连续数值区间作为环境可能采取的一系列合法行为的选择集的一部分。 另外值得注意的是,每个环境都应当具备属性 `action_space` 和 `observation_space` ,这两个属性应该是继承自 `Space` 类的对象实例;Gymnasium库支持大多数用户可能会需要用到的不同种类的空间实现方式[^2]。 #### 创建并测试 Box 动作空间的一个简单例子 下面是一个简单的Python脚本片段用于展示怎样创建和验证一个基本的 `Box` 空间成员资格的方法: ```python def check_box_space(): box_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(2,), dtype=np.float32) sample_action = box_space.sample() # 获取随机样本 is_valid = box_space.contains(sample_action) # 检查合法性 print(f"Sampled action {sample_action} within bounds? {'Yes' if is_valid else 'No'}") check_box_space() ``` 上述函数首先建立了一个二维的 `-1.0` 到 `1.0` 范围内的浮点型 `Box` 空间,接着从中抽取了一组随机样本来检验它确实位于所规定的范围内。
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值