关闭

11. Container With Most Water

51人阅读 评论(0) 收藏 举报
分类:

使用线段数,先枚举一条边作为较小的一条边,再找左边比它大和最右边比它大的边,两者的较大值就是以这条边为较短边的最大面积,构建和查询线段数的时间是log(n),总的时间是nlog(n)

class Solution {
struct segTree{
    int l,r;
    int v;
    segTree* left,*right;
    segTree(int val):v(val),left(NULL),right(NULL){};
};
public:
    void build(segTree* &root,vector<int> &nums,int l,int r)
    {
        if(r==l)
        {
            root=new segTree(l);
            root->l=l;
            root->r=r;
            return;
        }
        int mid=(l+r)>>1;
        root=new segTree(0);
        build(root->left,nums,l,mid);
        build(root->right,nums,mid+1,r);
        if(nums[root->left->v]>nums[root->right->v])
            root->v=root->left->v;
        else 
            root->v=root->right->v;
        root->l=l;
        root->r=r;
    }
    int search(segTree* &root,vector<int>& nums,int l,int r)
    {
        if(root==NULL||root->l>r||root->r<l)
            return -1;
        if(root->l==l&&root->r==r)
            return root->v;
        int mid=(root->l+root->r)>>1;
        if(r<=mid)
            return search(root->left,nums,l,r);
        if(l>=mid+1)
            return search(root->right,nums,l,r);
        int vl=search(root->left,nums,l,mid);
        int vr=search(root->right,nums,mid+1,r);
        if(nums[vl]>nums[vr])
            return vl;
        return vr;
    }
    int binarySearchR(segTree* &root,vector<int>& nums,int d,int l,int r)
    {
        int pos=l;
        int ans=pos;
        while(l<=r)
        {
            pos=search(root,nums,l,r);
            if(nums[pos]>=d)
            {
                ans=pos;
            }
            else 
                return ans;
            l=pos+1;
        }
        return ans;
    }
    int binarySearchL(segTree* &root,vector<int>& nums,int d,int l,int r)
    {
        int pos=r;
        int ans=pos;
        while(l<=r)
        {
            pos=search(root,nums,l,r);
            if(nums[pos]>=d)
            {
                ans=pos;
            }
            else
                return ans;
            r=pos-1;
        }
        return ans;
    }
    int maxArea(vector<int>& height) {
        int n=height.size();
        int i,j;
        int curArea,ans=0;
        segTree* root;
        build(root,height,0,n-1);

        for(i=0;i<n;i++)
        {
            if(height[i]==0)
                continue;
            int l=binarySearchL(root,height,height[i],0,i);
            int r=binarySearchR(root,height,height[i],i,n-1);
            curArea=max((i-l),(r-i))*height[i];
            ans=max(ans,curArea);
        }
        return ans;
    }
};
/*
[1,2,1,5,6,8,9,22,1,,3,5,6,7,4,6,8,10,2,0,3,5,7,8,5,12,4,10]
*/


另一种简单的思想,two points 向中间逼近

class Solution {
public:
    int maxArea(vector<int>& height) {
        int n=height.size();
        int i,j;
        int curArea,ans=0;
        int left=0,right=n-1;
        while(left<right)
        {
            curArea=min(height[right],height[left])*(right-left);
            ans=max(curArea,ans);
            if(height[left]>height[right])
                right--;
            else
                left++;
        }
        return ans;
    }
};



还有一种方法,先将数组排序,纪录下标最大和最小的点,是一种贪心策略;

class Solution {
public:
    struct Node{
        int h;
        int ind;;
    };
    static bool cmp(Node &a,Node &b)
    {
        return a.h>b.h;
    }
    int maxArea(vector<int>& height) {
        int n=height.size();
        int i,j;
        int curArea,ans=0;
        Node H[n];
        for(i=0;i<n;i++)
        {
            H[i].h=height[i];
            H[i].ind=i;
        }
        std::sort(H,H+n,cmp);
        int Max=H[0].ind,Min=H[0].ind;
        for(i=0;i<n;i++)
        {
            curArea=max((Max-H[i].ind),(H[i].ind-Min))*H[i].h;
            ans=max(ans,curArea);
            if(H[i].ind<Min)
                Min=H[i].ind;
            if(H[i].ind>Max)
                Max=H[i].ind;
        }
        return ans;
    }
};


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:14061次
    • 积分:1424
    • 等级:
    • 排名:千里之外
    • 原创:135篇
    • 转载:6篇
    • 译文:0篇
    • 评论:0条