Section4:-------Samples and Allocators

Samples and Allocators

When a pin delivers media data to another pin, it does not pass a direct pointer to the memory buffer. Instead, it delivers a pointer to a COM object that manages the memory. This object, called a media sample, exposes the IMediaSample interface. The receiving pin accesses the memory buffer by calling IMediaSample methods, such as IMediaSample::GetPointer, IMediaSample::GetSize, and IMediaSample::GetActualDataLength.

Samples always travel downstream, from output pin to input pin. In the push model, the output pin delivers a sample by calling IMemInputPin::Receive on the input pin. The input pin will either process the data synchronously (that is, completely inside the Receive method), or process it asynchronously on a worker thread. The input pin is allowed to block within the Receive method, if it needs to wait for resources.

Another COM object, called an allocator, is responsible for creating and managing media samples. Allocators expose the IMemAllocator interface. Whenever a filter needs a media sample with an empty buffer, it calls the IMemAllocator::GetBuffer method, which returns a pointer to the sample. Every pin connection shares one allocator. When two pins connect, they decide which filter will provide the allocator. The pins also set properties on the allocator, such as the number of buffers and the size of each buffer. (For details, see How Filters Connect and Negotiating Allocators.) 

The following illustration shows the relationships among the allocator, the media samples, and the filter.

Media Samples and Allocators

Media Sample Reference Counts

An allocator creates a finite pool of samples. At any time, some samples may be in use, while others are available for GetBuffer calls. The allocator uses reference counting to keep track of the samples. The GetBuffer method returns a sample with a reference count of 1. If the reference count goes to zero, the sample goes back into the allocator's pool, where it can be used in the next GetBuffer call. As long as the reference count remains above zero, the sample is not available to GetBuffer. If every sample belonging to the allocator is in use, the GetBuffer method blocks until a sample becomes available.

For example, suppose that an input pin receives a sample. If it processes the sample synchronously, inside the Receive method, it does not increment the reference count. After Receive returns, the output pin releases the sample, the reference count goes to zero, and the sample returns to the allocator's pool. On the other hand, if the input pin processes the sample on a worker thread, it increments the reference count before leaving the Receive method. The reference count is now 2. When the output pin releases the sample, the count goes to 1; the sample does not yet return to the pool. After the worker thread is done with the sample, it calls Release to free the sample. Now the sample returns to the pool.

When a pin receives a sample, it can copy the data to another sample, or it can modify the original sample and deliver that one to the next filter. Potentially, a sample can travel the entire length of the graph, each filter calling AddRef and Release in turn. Therefore, the output pin must never re-use a sample after it calls Receive, because a downstream filter may be using the sample. The output pin must always call GetBuffer to get a new sample.

This mechanism reduces the amount of memory allocation, because filters re-use the same buffers. It also prevents filters from accidentally writing over data that has not been processed, because the allocator maintains a list of available samples.

A filter can use separate allocators for input and output. It might do this if it expands the input data (for example, by decompressing it). If the output is no larger than the input, a filter might process the data in place, without copying it to a new sample. In that case, two or more pin connections can share one allocator.

Committing and Decommitting Allocators

When a filter first creates an allocator, the allocator has not reserved any memory buffers. At this point, any calls to the GetBuffer method will fail. When streaming starts, the output pin calls IMemAllocator::Commit, which commits the allocator, causing it to allocate memory. Pins can now call GetBuffer.

When streaming stops, the pin calls IMemAllocator::Decommit, which decommits the allocator. All subsequent calls to GetBuffer fail until the allocator is committed again. Also, if any calls to GetBuffer are currently blocked waiting for a sample, they immediately return a failure code. The Decommit method may or may not free the memory, depending on the implementation. For example, the CMemAllocator class waits until its destructor method to free memory.

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值