关闭

[生成函数][NTT][多项式求逆]BZOJ 3456: 城市规划

213人阅读 评论(0) 收藏 举报
分类:

Description

n个有标号点的联通图的方案数。

Solution

fnn个有标号点的联通图的方案数。
考虑容斥。n个有标号点的一般图的方案数为2(n2)
考虑图中的一个点所在联通块大小,设其为i。那么就有(n1i1)种选法,剩下的乱选,为2(ni2)
所以就有了这样的递推式:

fn=2(n2)i=1n1(n1i1)2(ni2)fi
移项整理就得到了:
2(n2)(n1)!=i=1nfi(i1)!2(n12)(ni)!
考虑生成函数
F(x)G(x)H(x)F(x)G(x)=====n02(n2)(n1)!xnn0fn(n1)!xnn02(n2)n!xn(GH)(x)(FH1)(x)
多项式求逆就好啦。。
好像现在才知道FFT NTT都是循环卷积的,所以要开大一倍。。。

UPD:
后来又推了一发。。

G(x)C(x)==n02(n2)n!xnn0fnn!xn
就有
G(x)G(x)==(CG)(x)eC(x)
好像就可以牛顿迭代做了呢。。

#include <bits/stdc++.h>
using namespace std;

const int N = 404040;
const int MOD = 1004535809;
const int G = 3;
typedef long long ll;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

int w[2][N];
int g, ig, num;
int n, m;
int R[N];
int fac[N], inv[N];
int F[N], H[N], iH[N];

inline int Pow(int a, int b) {
    int c = 1;
    while (b) {
        if (b & 1) c = (ll)c * a % MOD;
        b >>= 1; a = (ll)a * a % MOD;
    }
    return c;
}
inline int Inv(int x) {
    return Pow(x, MOD - 2);
}
inline int Mod(int x) {
    while (x >= MOD) x -= MOD; return x;
}
void Prep(int n) {
    g = Pow(G, (MOD - 1) / n);
    ig = Inv(g); num = n;
    w[0][0] = w[1][0] = 1;
    for (int i = 1; i <= n; i++) {
        w[0][i] = (ll)w[0][i - 1] * ig % MOD;
        w[1][i] = (ll)w[1][i - 1] * g % MOD;
    }
}
inline void FFT(int *a, int n, int r) {
    static int x, y, INV;
    for (int i = 0; i < n; i++)
        if (R[i] > i) swap(a[i], a[R[i]]);
    for (int i = 1; i < n; i <<= 1)
        for (int j = 0; j < n; j += (i << 1))
            for (int k = 0; k < i; k++) {
                x = a[j + k]; y = (ll)a[j + k + i] * w[r][num / (i << 1) * k] % MOD;
                a[j + k] = Mod(x + y); a[j + k + i] = Mod(x - y + MOD);
            }
    if (!r) {
        INV = Inv(n);
        for (int i = 0; i < n; i++)
            a[i] = (ll)a[i] * INV % MOD;
    }
}
void GetInv(int *a, int *b, int n) {
    static int tmp[N];
    if (n == 1) return (void)(b[0] = Inv(a[0]));
    GetInv(a, b, n >> 1);
    for (int i = 0; i < n; i++) {
        tmp[i] = a[i]; tmp[i + n] = 0;
    }
    int L = 0; while (!(n >> L & 1)) L++;
    for (int i = 1; i < (n << 1); i++)
        R[i] = (R[i >> 1] >> 1) | ((i & 1) << L);
    FFT(tmp, n << 1, 1); FFT(b, n << 1, 1);
    for (int i = 0; i < (n << 1); i++)
        tmp[i] = (ll)b[i] * (2 + MOD - (ll)tmp[i] * b[i] % MOD) % MOD;
    FFT(tmp, n << 1, 0);
    for (int i = 0; i < n; i++) {
        b[i] = tmp[i]; b[n + i] = 0;
    } 
}
inline int Calc(int x) {
    return (ll)x * (x - 1) / 2 % (MOD - 1);
}

int main(void) {
    freopen("1.in", "r", stdin);
    read(n); inv[1] = 1;
    for (m = 1; m <= n; m <<= 1);
    for (int i = 2; i < m; i++)
        inv[i] = (ll)(MOD - MOD / i) * inv[MOD % i] % MOD;
    fac[0] = inv[0] = 1;
    for (int i = 1; i < m; i++) {
        fac[i] = (ll)fac[i - 1] * i % MOD;
        inv[i] = (ll)inv[i - 1] * inv[i] % MOD;
    }
    for (int i = 0; i < m; i++) {
        F[i] = (ll)Pow(2, Calc(i)) * inv[i - 1] % MOD;
        H[i] = (ll)Pow(2, Calc(i)) * inv[i] % MOD;
    }
    Prep(m << 1); GetInv(H, iH, m);
    FFT(F, m <<= 1, 1); FFT(iH, m, 1);
    for (int i = 0; i < m; i++) F[i] = (ll)F[i] * iH[i] % MOD;
    FFT(F, m, 0);
    printf("%d\n", (ll)F[n] * fac[n - 1] % MOD);
    return 0;
}
2
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

BZOJ 3456 城市规划 快速傅里叶变换

题目大意:求nn个点的无向简单连通图个数,n≤1.3∗105n\leq1.3*10^5 递推式:fi=2C2i−∑i−1j=1fj∗Cj−1i−1∗2C2i−jf_i=2^{C_i^2}-\sum_...
  • PoPoQQQ
  • PoPoQQQ
  • 2015-05-27 17:08
  • 3087

BZOJ 3456 城市规划 多项式求ln

BZOJ 3456 城市规划 多项式求ln
  • wzq_QwQ
  • wzq_QwQ
  • 2015-09-14 10:05
  • 1500

bzoj-3456 城市规划

题意: 求n个点的无向连通图个数; n个点不同,答案对1004535809取模; n 题解: 生成函数的种种神奇应用; 不过这玩意真是越来越不OI了(笑); 这道题首先考虑递推公式; 设f[x]为...
  • ww140142
  • ww140142
  • 2015-09-13 14:22
  • 1310

[BZOJ3456]城市规划(组合数学+容斥原理+NTT+多项式求逆)

题目描述传送门题目大意:求n个点的无重边无自环无向连通图数目。题解这题好强啊。。设f(i)f(i)表示与1连通的连通块大小为i(包括1)的连通图数目 如果要是将i个点之间的2i(i−1)22^{i(...
  • Clove_unique
  • Clove_unique
  • 2017-04-26 17:48
  • 626

bzoj 3456: 城市规划 (NTT+多项式求逆)

题目描述传送门题目大意:求n个点简单无向连通图数,其中任意点之间可以随意连边,不存在重边和自环。题解设f[n]f[n]表示n个点简单连通图个数(即1所属的连通块内有n个点) f[n]=2(n−1)∗...
  • clover_hxy
  • clover_hxy
  • 2017-02-24 11:40
  • 556

bzoj3456/jzoj3303:城市规划(画柿子+多项式逆元+NTT)

我noip初赛最后半个小时就在数4个点的连通图有几个,结果还数错了…然后我就很膜拜这题,终于被我在jzoj找到了。权限题传送门题意:n个不同的点的构成的连通图有多少种,模一个费马素数。n≤2e5设f[...
  • q582116859
  • q582116859
  • 2017-10-25 20:03
  • 102

[n点无向图个数 分治FFT || 多项式求逆] BZOJ 3456 城市规划

然后就分治FFT了 #include #include #include using namespace std; typedef long long ll; inline char nc(){...
  • u014609452
  • u014609452
  • 2016-09-14 19:28
  • 431

[BZOJ3456] 城市规划 - 快速傅里叶变换 - 快速数论变换 - 卷积 - 多项式求逆

-太穷买不起权限号只能嘴巴+其他网站测评AC ----------以下部分为纸张蒟蒻zzt想到的部分,神犇可忽略不计----------     啥子?要求代标号无向连通图?这不是思博题?不是一眼...
  • whzzt
  • whzzt
  • 2016-07-23 16:19
  • 447

[BZOJ3456] [多项式求逆] 城市规划

多项式求逆模板题%%%Manchery#include #include #include #define N 390010 #define P 1004535809 #define G 3us...
  • Coldef
  • Coldef
  • 2017-06-04 19:46
  • 192

【XSY1332】【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln

题解  设fif_i为nn个点组成的无向图个数,gig_i为nn个点组成的无向连通图个数  经过简单的推导(枚举11所在的连通块大小),有: fi=2n(n−1)2 f_i=2^{\frac{n(n...
  • ez_yww
  • ez_yww
  • 2017-09-05 18:47
  • 195
    个人资料
    • 访问:29632次
    • 积分:2242
    • 等级:
    • 排名:第19511名
    • 原创:181篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    友情链接