Hadoop1.2.1源码解析系列:JT与TT之间的心跳通信机制——JT篇

原创 2013年12月05日 00:36:12

上一篇浅析了Hadoop心跳机制的TT(TaskTracker)方面,这一篇浅析下JT(JobTracker)方面。

我们知道心跳是TT通过RPC请求调用JT的heartbeat()方法的,TT在调用JT的heartbeat回收集自身的状态信息封装到TaskTrackerStatus对象中,传递给JT。下面看看JT如何处理来自TT的心跳。

1.JobTracker.heartbeat():

 // Make sure heartbeat is from a tasktracker allowed by the jobtracker.
    if (!acceptTaskTracker(status)) {
      throw new DisallowedTaskTrackerException(status);
    }
第一步是检查发送心跳请求的TT是否属于可允许的TT,这个是根据一个HostsFileReader对象进行判断的,该对象是在实例化JT的时候创建的,这个类保存了两个队列,分别是includes和excludes队列,includes表示可以访问的host列表,excludes表示不可访问的host列表,这两个列表的内容根据两个mapred.hosts和mapred.hosts.exclude(mapred-site,xml中,默认是null)这两个参数指定的文件名读取的。具体可参考JT源码1956行。

2.JobTracker.heartbeat():

String trackerName = status.getTrackerName();
    long now = clock.getTime();
    if (restarted) {
      faultyTrackers.markTrackerHealthy(status.getHost());
    } else {
      faultyTrackers.checkTrackerFaultTimeout(status.getHost(), now);
    }
这一步是检查TT是否重启,是重启的话标识该TT的状态为健康的,否则检查TT的健康状态。faultyTrackers.markTrackerHealthy(status.getHost())内部将该TT所在的Host上所有的TT(从这里可以看出hadoop考虑到一个Host上可能存在多个TT的可能)从黑名单,灰名单和可能存在错误的列表上删除,也就是从potentiallyFaultyTrackers队列中移除该Host,通过更新JT的numGraylistedTrackers/numBlacklistedTrackers数量以及JT的totalMapTaskCapacity和totalReduceTaskCapacity数量。至于如何检查TT健康状态,具体是根据JT上记录的关于TT执行任务失败的次数来判断的(具体不是太理解)。

3.JobTracker.heartbeat():

HeartbeatResponse prevHeartbeatResponse =
      trackerToHeartbeatResponseMap.get(trackerName);
    boolean addRestartInfo = false;

    if (initialContact != true) {
      // If this isn't the 'initial contact' from the tasktracker,
      // there is something seriously wrong if the JobTracker has
      // no record of the 'previous heartbeat'; if so, ask the 
      // tasktracker to re-initialize itself.
      if (prevHeartbeatResponse == null) {
        // This is the first heartbeat from the old tracker to the newly 
        // started JobTracker
        if (hasRestarted()) {
          addRestartInfo = true;
          // inform the recovery manager about this tracker joining back
          recoveryManager.unMarkTracker(trackerName);
        } else {
          // Jobtracker might have restarted but no recovery is needed
          // otherwise this code should not be reached
          LOG.warn("Serious problem, cannot find record of 'previous' " +
                   "heartbeat for '" + trackerName + 
                   "'; reinitializing the tasktracker");
          return new HeartbeatResponse(responseId, 
              new TaskTrackerAction[] {new ReinitTrackerAction()});
        }

      } else {
                
        // It is completely safe to not process a 'duplicate' heartbeat from a 
        // {@link TaskTracker} since it resends the heartbeat when rpcs are 
        // lost see {@link TaskTracker.transmitHeartbeat()};
        // acknowledge it by re-sending the previous response to let the 
        // {@link TaskTracker} go forward. 
        if (prevHeartbeatResponse.getResponseId() != responseId) {
          LOG.info("Ignoring 'duplicate' heartbeat from '" + 
              trackerName + "'; resending the previous 'lost' response");
          return prevHeartbeatResponse;
        }
      }
    }
此处第一句从JT记录的HeartbeatResponse队列中获取该TT的HeartbeatResponse信息,即判断JT之前是否收到过该TT的心跳请求。如果initialContact!=true,表示TT不是首次连接JT,同时如果prevHeartbeatResponse==null,根据注释可以知道如果TT不是首次连接JT,而且JT中并没有该TT之前的心跳请求信息,表明This is the first heartbeat from the old tracker to the newly started JobTracker。判断hasRestarted是否为true,hasRestarted是在JT初始化(initialize()方法)时,根据recoveryManager的shouldRecover来决定的,hasRestarted=shouldRecover,所以当需要进行job恢复时,addRestartInfo会被设置为true,即需要TT进行job恢复操作,同时从recoveryManager的recoveredTrackers队列中移除该TT。如果不需要进行任务恢复,则直接返回HeartbeatResponse,并对TT下重新初始化指令(后期介绍),注意此处返回的responseId还是原来的responseId,即responseId不变。上面说的都是prevHeartbeatResponse==null时的情况,下面说说prevHeartbeatResponse!=null时如何处理,当prevHeartbeatResponse!=null时会直接返回prevHeartbeatResponse,而忽略本次心跳请求。

4.JobTracker.heartbeat():

// Process this heartbeat 
    short newResponseId = (short)(responseId + 1);
    status.setLastSeen(now);
    if (!processHeartbeat(status, initialContact, now)) {
      if (prevHeartbeatResponse != null) {
        trackerToHeartbeatResponseMap.remove(trackerName);
      }
      return new HeartbeatResponse(newResponseId, 
                   new TaskTrackerAction[] {new ReinitTrackerAction()});
    }

首先将responseId+1,然后记录心跳发送时间。接着来看看processHeartbeat()方法。

5.JobTracker.processHeartbeat():

 boolean seenBefore = updateTaskTrackerStatus(trackerName,
                                                     trackerStatus);
根据该TT的上一次心跳发送的状态信息更新JT的一些信息,如totalMaps,totalReduces,occupiedMapSlots,occupiedReduceSlots等,接着根据本次心跳发送的TT状态信息再次更新这些变量。

6.JobTracker.processHeartbeat():

TaskTracker taskTracker = getTaskTracker(trackerName);
        if (initialContact) {
          // If it's first contact, then clear out 
          // any state hanging around
          if (seenBefore) {
            lostTaskTracker(taskTracker);
          }
        } else {
          // If not first contact, there should be some record of the tracker
          if (!seenBefore) {
            LOG.warn("Status from unknown Tracker : " + trackerName);
            updateTaskTrackerStatus(trackerName, null);
            return false;
          }
        }
如果该TT是首次连接JT,且存在oldStatus,则表明JT丢失了TT,具体意思应该是JT在一段时间内与TT失去了联系,之后TT恢复了,所以发送心跳时显示首次连接。lostTaskTracker(taskTracker):会将该TT从所有的队列中移除,并将该TT上记录的job清除掉(kill掉),当然对那些已经完成的Job不会进行次操作。当TT不是首次连接到JT,但是JT却没有该TT的历史status信息,则表示JT对该TT未知,所以重新更新TaskTracker状态信息。

7.JobTracker.processHeartbeat():

    updateTaskStatuses(trackerStatus);
    updateNodeHealthStatus(trackerStatus, timeStamp);
更新Task和NodeHealth信息,较复杂。

8.JobTracker.heartbeat():如果processHeartbeat()返回false,则返回HeartbeatResponse(),并下达重新初始化TT指令。

// Initialize the response to be sent for the heartbeat
    HeartbeatResponse response = new HeartbeatResponse(newResponseId, null);
    List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>();
    boolean isBlacklisted = faultyTrackers.isBlacklisted(status.getHost());
    // Check for new tasks to be executed on the tasktracker
    if (recoveryManager.shouldSchedule() && acceptNewTasks && !isBlacklisted) {
      TaskTrackerStatus taskTrackerStatus = getTaskTrackerStatus(trackerName);
      if (taskTrackerStatus == null) {
        LOG.warn("Unknown task tracker polling; ignoring: " + trackerName);
      } else {
        List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);
        if (tasks == null ) {
          tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName));
        }
        if (tasks != null) {
          for (Task task : tasks) {
            expireLaunchingTasks.addNewTask(task.getTaskID());
            if(LOG.isDebugEnabled()) {
              LOG.debug(trackerName + " -> LaunchTask: " + task.getTaskID());
            }
            actions.add(new LaunchTaskAction(task));
          }
        }
      }
    }
此处会实例化一个HeartbeatResponse对象,作为本次心跳的返回值,在初始化一个TaskTrackerAction队列,用于存放JT对TT下达的指令。首先需要判断recoveryManager的recoveredTrackers是否为空,即是否有需要回复的TT,然后根据TT心跳发送的acceptNewTasks值,即表明TT是否可接收新任务,并且该TT不在黑名单中,同上满足以上条件,则JT可以为TT分配任务。分配任务的选择方式是优先CleanipTask,然后是SetupTask,然后才是Map/Reduce Task。下面来看下getSetupAndCleanupTasks()方法。

9.JobTracker.getSetupAndCleanupTasks():

// Don't assign *any* new task in safemode
    if (isInSafeMode()) {
      return null;
    }
如果集群处于safe模式,则不分配任务。

    int maxMapTasks = taskTracker.getMaxMapSlots();
    int maxReduceTasks = taskTracker.getMaxReduceSlots();
    int numMaps = taskTracker.countOccupiedMapSlots();
    int numReduces = taskTracker.countOccupiedReduceSlots();
    int numTaskTrackers = getClusterStatus().getTaskTrackers();
    int numUniqueHosts = getNumberOfUniqueHosts();
计算TT的最大map/reduce slot,以及已占用的map/reduce slot,以及集群可使用的TT数量,和集群的host数量。

for (Iterator<JobInProgress> it = jobs.values().iterator();
             it.hasNext();) {
          JobInProgress job = it.next();
          t = job.obtainJobCleanupTask(taskTracker, numTaskTrackers,
                                    numUniqueHosts, true);
          if (t != null) {
            return Collections.singletonList(t);
          }
        }
首先获取Job的Cleanup任务,每个Job有两个Cleanup任务,分别是map和reduce的。

for (Iterator<JobInProgress> it = jobs.values().iterator();
             it.hasNext();) {
          JobInProgress job = it.next();
          t = job.obtainTaskCleanupTask(taskTracker, true);
          if (t != null) {
            return Collections.singletonList(t);
          }
        }

然后获取一个Cleanup任务的TaskAttempt。

for (Iterator<JobInProgress> it = jobs.values().iterator();
             it.hasNext();) {
          JobInProgress job = it.next();
          t = job.obtainJobSetupTask(taskTracker, numTaskTrackers,
                                  numUniqueHosts, true);
          if (t != null) {
            return Collections.singletonList(t);
          }
        }
然后在获取Job的setup任务。上面这三个全部是获取的map任务,而下面是获取reduce任务,方法基本一样。

如果该方法返回null,则表示没有cleanup或者setup任务需要执行,则执行map/reduce任务。

10.JobTracker.heartbeat():

if (tasks == null ) {
          tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName));
        }
此处是使用TaskScheduler调度任务,一大难点,后期分析。

11.JobTracker.heartbeat():

if (tasks != null) {
          for (Task task : tasks) {
            expireLaunchingTasks.addNewTask(task.getTaskID());
            if(LOG.isDebugEnabled()) {
              LOG.debug(trackerName + " -> LaunchTask: " + task.getTaskID());
            }
            actions.add(new LaunchTaskAction(task));
          }
        }
生成一个LaunchTaskAction指令。

// Check for tasks to be killed
    List<TaskTrackerAction> killTasksList = getTasksToKill(trackerName);
    if (killTasksList != null) {
      actions.addAll(killTasksList);
    }
     
    // Check for jobs to be killed/cleanedup
    List<TaskTrackerAction> killJobsList = getJobsForCleanup(trackerName);
    if (killJobsList != null) {
      actions.addAll(killJobsList);
    }

    // Check for tasks whose outputs can be saved
    List<TaskTrackerAction> commitTasksList = getTasksToSave(status);
    if (commitTasksList != null) {
      actions.addAll(commitTasksList);
    }
以上分别是下达kill task指令,kill/cleanedup job指令,commit task指令。以上四种指令,加上一个ReinitTackerAction,这是心跳JT对TT下达的所有五种指令,以后可以相信对其进行分析。

12.JobTracker.heartbeat():

// calculate next heartbeat interval and put in heartbeat response
    int nextInterval = getNextHeartbeatInterval();
    response.setHeartbeatInterval(nextInterval);
    response.setActions(
                        actions.toArray(new TaskTrackerAction[actions.size()]));
    
    // check if the restart info is req
    if (addRestartInfo) {
      response.setRecoveredJobs(recoveryManager.getJobsToRecover());
    }
        
    // Update the trackerToHeartbeatResponseMap
    trackerToHeartbeatResponseMap.put(trackerName, response);

    // Done processing the hearbeat, now remove 'marked' tasks
    removeMarkedTasks(trackerName);
剩下一些收尾工作,如计算下次发送心跳的时间,以及设置需要TT进行恢复的任务,更新trackerToHeartbeatResponseMap队列,移除标记的task。最后返回HeartbeatResponse对象,完成心跳请求响应。

到此JT的heartbeat()完成了,中间很多地方比较复杂,都没有去深追,以后有时间可以继续研究,如有错误,请不吝指教,谢谢



阿里巴巴-杭州,saas化服务时间机会触手可及,欢迎投递简历:,给我们一个认识你的机会,给自己一个实现年初的小目标的机会。

版权声明:本文为博主原创文章,转载请注明出处,谢谢。

相关文章推荐

jdk 源码分析(21)java 动态代理和反射

java动态代理用在很多地方。spring框架,RPC框架中都使用了动态代理,动态代理很重要。 首先看看静态代理: 相对静态代理而已,静态代理需要对每一个方法做一次处理。如下: 定义...

java学习笔记之多线程生产者与消费者

生产者-消费者问题是一个经典的进程同步问题。在同一个进程地址空间内执行的两个线程生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。消费者线程从缓冲区中获得物品,然后释放缓冲区。当生产...

Hadoop1.2.1源码解析系列:JT与TT之间的心跳通信机制——命令篇

简单介绍Hadoop心跳机制中JT对TT下达的五种命令:ReinitTrackerAction,KillTaskAction,KillJobAction,CommitTaskAction,Launch...

Hadoop1.2.1源码解析系列:JT与TT之间的心跳通信机制——TT篇

JobTracker与TaskTracker之间的通信机制——心跳机制,是MapReduce中一个重要的知识点,了解该方法可以更好地了解JobTracker如何判断一个TaskTracker是否或者,...

Hadoop1.2.1源码解析系列:JT与TT之间的心跳通信机制——TT篇

在Hadoop中JT(JobTracker)与TT(TaskTracker)之间的通信是通过心跳机制完成的。JT实现InterTrackerProtocol协议,该协议定义了JT与TT之间的通信机制—...

hadoop心跳机制源码解析

1. hadoop集群是master/slave模式,master包括Namenode和Jobtracker,slave包括Datanode和Tasktracker。 2. master启动的时...
  • jsy625
  • jsy625
  • 2014年12月30日 21:19
  • 303

Hadoop心跳机制源码分析

原文地址:http://weixiaolu.iteye.com/blog/1544860 正文: 一.体系背景 首先和大家说明一下:hadoop的心跳机制的底层是通过RPC机制实现的...
  • xxjin
  • xxjin
  • 2013年10月11日 17:13
  • 713

Jt —— 面向 Java 模式的框架

Jt —— 面向 Java 模式的框架 消息传送设计模式应用 Al Galvis, 顾问, IBM 简介: Jt 是一种用于快速实现 Java 应用程序的设计模式框架。除了具有 SO...
  • lionzl
  • lionzl
  • 2012年10月11日 19:49
  • 518

java解析JT808协议

http://blog.csdn.net/hylexus/article/details/54987786 目录(?)[+] JT808协议扫盲 1 数据类型...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hadoop1.2.1源码解析系列:JT与TT之间的心跳通信机制——JT篇
举报原因:
原因补充:

(最多只允许输入30个字)