00-EM算法

在GMM/HMM(语音识别)训练过程中,需要使用EM算法进行求解模型参数。所以,本文主要推导一下EM算法。即明白什么是期望最大化

Outline:

  1. 极大似然估计(Maximum Likelihood Estimation, MLE)
  2. 期望最大化算法(Expectation Maximization, EM)

我们知道如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法(MLE),或者贝叶斯估计法来估计模型参数(如:求在校学生身高分布)。然而,当模型中含有隐藏变量时,就不能简单地使用这些估计方法(如:《统计学习方法-李航》中的三硬币模型)。所以,在含有隐变量(Latent Variables)统计模型中,就需要利用EM算法来找到符合观测数据的最大似然的模型参数。

1.极大似然估计(Maximum Likelihood Estimation, MLE)

假如有 n 个独立同分布的观测值 X=(x1,x2,,xn) ,来自一个未知概率密度函数的分布 f0(.|θ) 。问题就是怎么从观测值中求出待估参数 θ ?显然,这里可以利用一种常用的点估计方法——最大似然估计,求待估参数 θ
所有观测的联合密度函数:

f(x1,x2,,xn|θ)=f(x1|θ)×f(x2|θ)××f(xn|θ)

θ 似然函数:

L(θ;x1,x2,,xn)=f(x1,x2,,xn|θ)=i=1nf(xi|θ)lnL(θ;x1,x2,,xn)=i=1nlnf(xi|θ)

极大化似然函数:

θ^=argmaxθlnL(θ;x1,x2,,xn)

得到的 θ^ 作为 θ 的极大似然估计,这样我们就求出了模型参数了。

2.期望最大化算法(Expectation Maximization,EM)

然而在一些实际问题中,所要求解的概率模型含有Latent Variable,导致无法利用ML直接计算。(注:下式是向量形式,对向量形式求概率实际上对每一个观测值概率做累乘

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值