lucene倒排索引原理

原创 2004年08月04日 09:49:00

Lucene是一个高性能的全文检索引擎,它使用的是倒排文件索引结构。该数据结构及相应的生成算法如下:

0)?设有两篇文章1和2
文章1的内容为:Tom lives in Guangzhou,I live in Guangzhou too.
文章2的内容为:He once lived in Shanghai.
1)由于lucene是基于关键词索引和查询的,首先我们要取得这两篇文章的关键词,通常我们需要如下处理措施
a.我们现在有的是文章内容,即一个字符串,我们先要找出字符串中的所有单词,即分词。英文单词由于用空格分隔,比较好处理。中文单词间是连在一起的需要特殊的分词处理。
b.文章中的”in”, “once” “too”等词没有什么实际意义,中文中的“的”“是”等字通常也无具体含义,这些不代表概念的词可以过滤掉
c.用户通常希望查“He”时能把含“he”,“HE”的文章也找出来,所以所有单词需要统一大小写。
d.用户通常希望查“live”时能把含“lives”,“lived”的文章也找出来,所以需要把“lives”,“lived”还原成“live”
e.文章中的标点符号通常不表示某种概念,也可以过滤掉
在lucene中以上措施由Analyzer类完成

经过上面处理后
?文章1的所有关键词为:[tom] [live] [guangzhou] [i] [live] [guangzhou]
?文章2的所有关键词为:[he] [live] [shanghai]
2) 有了关键词后,我们就可以建立倒排索引了。上面的对应关系是:“文章号”对“文章中所有关键词”。倒排索引把这个关系倒过来,变成:“关键词”对“拥有该关键词的所有文章号”。文章1,2经过倒排后变成
关键词?? 文章号
guangzhou 1
he?????? 2
i??????? 1
live????? 1,2
shanghai? 2
tom????? 1

通常仅知道关键词在哪些文章中出现还不够,我们还需要知道关键词在文章中出现次数和出现的位置,通常有两种位置:a)字符位置,即记录该词是文章中第几个字符(优点是关键词亮显时定位快);b)关键词位置,即记录该词是文章中第几个关键词(优点是节约索引空间、词组(phase)查询快),lucene中记录的就是这种位置。

加上“出现频率”和“出现位置”信息后,我们的索引结构变为:
关键词?? 文章号[出现频率]?? 出现位置
guangzhou 1[2]?????????????? 3,6
he?????? 2[1]?????????????? 1
i???????? 1[1]?????????????? 4
live????? 1[2],2[1]?????????? 2,5,2
shanghai? 2[1]?????????????? 3
tom????? 1[1]?????????????? 1

以live这行为例我们说明一下该结构:live在文章1中出现了2次,文章2中出现了一次,它的出现位置为“2,5,2”这表示什么呢?我们需要结合文章号和出现频率来分析,文章1中出现了2次,那么“2,5”就表示live在文章1中出现的两个位置,文章2中出现了一次,剩下的“2”就表示live是文章2中第2个关键字。
?
以上就是lucene索引结构中最核心的部分。我们注意到关键字是按字符顺序排列的(lucene没有使用B树结构),因此lucene可以用二元搜索算法快速定位关键词。
?
实现时 lucene将上面三列分别作为词典文件(Term Dictionary)、频率文件(frequencies)、位置文件(positions)保存。其中词典文件不仅保存有每个关键词,还保留了指向频率文件和位置文件的指针,通过指针可以找到该关键字的频率信息和位置信息。

?Lucene中使用了field的概念,用于表达信息所在位置(如标题中,文章中,url中),在建索引中,该field信息也记录在词典文件中,每个关键词都有一个field信息(因为每个关键字一定属于一个或多个field)。

?为了减小索引文件的大小,Lucene对索引还使用了压缩技术。首先,对词典文件中的关键词进行了压缩,关键词压缩为<前缀长度,后缀>,例如:当前词为“阿拉伯语”,上一个词为“阿拉伯”,那么“阿拉伯语”压缩为<3,语>。其次大量用到的是对数字的压缩,数字只保存与上一个值的差值(这样可以减小数字的长度,进而减少保存该数字需要的字节数)。例如当前文章号是16389(不压缩要用3个字节保存),上一文章号是16382,压缩后保存7(只用一个字节)。
?
?下面我们可以通过对该索引的查询来解释一下为什么要建立索引。
假设要查询单词 “live”,lucene先对词典二元查找、找到该词,通过指向频率文件的指针读出所有文章号,然后返回结果。词典通常非常小,因而,整个过程的时间是毫秒级的。
而用普通的顺序匹配算法,不建索引,而是对所有文章的内容进行字符串匹配,这个过程将会相当缓慢,当文章数目很大时,时间往往是无法忍受的。

全文搜索Lucene——之倒排索引

全文搜索Lucene——之倒排索引 关系数据库不适合做全文搜索:     like '%xxx%'效率很慢,建的索引将无效,查询的时候会像翻书一样一页一页的翻     返回的结果没有匹配度的...
  • u010558660
  • u010558660
  • 2016年11月30日 14:27
  • 1487

Lucene底层原理和优化经验分享(1)-Lucene简介和索引原理

基于Lucene检索引擎我们开发了自己的全文检索系统,承担起后台PB级、万亿条数据记录的检索工作,这里向大家分享下Lucene底层原理研究和一些优化经验。   从两个方面介绍:   1. Luce...
  • njpjsoftdev
  • njpjsoftdev
  • 2017年01月04日 08:52
  • 10724

Lucene 工作原理 之倒排索引

1.简介 倒排索引源于实际应用中需要根据属性的值来查找记录。这种索引表中的每一项都包括一个属性值和具有该属性值的各记录的地址。由于不是由记录来确定属性值,而是由属性值来确定记录的位置,因而称为倒排索...
  • ChiChengIT
  • ChiChengIT
  • 2013年07月03日 16:36
  • 8278

Lucene倒排索引原理.doc

  • 2011年09月13日 01:58
  • 32KB
  • 下载

终于搞明白了Lucene倒排索引原理和中文分词

输入一篇中文文本后:1. 首先进行中文分词,将一段文本切分成以词为单位的文本2. 对分词后的文本创建Lucene倒排索引 转载文章:《Lucene倒排索引技术》    Lucene是一个高性能的jav...
  • dorothyle
  • dorothyle
  • 2011年05月30日 17:28
  • 1398

lucene倒排索引原理

Lucene是一个高性能的java全文检索工具包,它使用的是倒排文件索引结构。该结构及相应的生成算法如下: 0)设有两篇文章1和2 文章1的内容为:Tom lives in Guangzh...
  • myfamiliar
  • myfamiliar
  • 2012年06月15日 17:31
  • 432

Lucene中倒排索引原理

1.简介 倒排索引源于实际应用中需要根据属性的值来查找记录。这种索引表中的每一项都包括一个属性值和具有该属性值的各记录的地址。由于不是由记录来确定属性值,而是由属性值来确定记录的位置,因而称为倒排索...
  • d87420572
  • d87420572
  • 2013年01月08日 10:21
  • 761

Lucene 4.X 倒排索引原理与实现: (3) Term Dictionary和Index文件 (FST详细解析)

我们来看最复杂的部分,就是Term Dictionary和Term Index文件,Term Dictionary文件的后缀名为tim,Term Index文件的后缀名是tip,格式如图所示。 ...
  • xiefangjin
  • xiefangjin
  • 2016年03月23日 23:25
  • 900

Lucene 工作原理 之倒排索引

1.简介倒排索引源于实际应用中需要根据属性的值来查找记录。这种索引表中的每一项都包括一个属性值和具有该属性值的各记录的地址。由于不是由记录来确定属性值,而是由属性值来确定记录的位置,因而称为倒排索引(...
  • guiyecheng
  • guiyecheng
  • 2017年02月21日 10:54
  • 289

一氪钟:浅说 Lucene 倒排索引与分词

Lucene 是基于倒排索引来实现快速的全文检索的,那么倒排索引是什么概念呢? 首先来看看普通索引是怎样建立的,请参考下图。 图中,我们为右侧的每一个文档都...
  • wm_1991
  • wm_1991
  • 2016年08月16日 20:44
  • 407
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:lucene倒排索引原理
举报原因:
原因补充:

(最多只允许输入30个字)