机器学习或数据挖掘,就是在数据中寻求答案的算法。
而寻求的答案就是训练完成的数据模型。
大部分的数据建模方法都属于这两种:
1) 数据汇总,对数据进行 简洁的近似描述
如pagerank、聚类
2) 特征抽取
如频繁项集(同时频繁出现的元素子集)、相似项(共同元素比例较高的集合对)
在机器学习或数据挖掘之前,还需要概率,或信息论的一些相关知识,现实世界的对象需要转换为计算机的度量方式。
1. TF.IDF
2. 熵的相关概念
3. 相似度的度量及计算
4. 对文本相似度的分析
5. 局部敏感Hash的分析LSH
6. 查找相似项的处理流程
7. 几种距离度量方式
相关知识:
1. TF.IDF
文本分类时,一个重要指标:TF.IDF,分为两个阶段: 同一文档中的统计;以文档为粒度,所有文档的统计。
TF: term frequency 词项频率,同一篇文档中,所有词项出现频率的 归一化
IDF:inverse document frequency 逆文档频率,所有文档数目,与某一词出现的文档的数目 的比率关系
其中的关系:
不仅仅是一个公式,里面包含了信息论中熵的概念。IDF就是一个特定条件下关键词的概率分布的交叉熵。应用了对数运算。
2. 熵的相关概念
熵,表示信息量的大小,与概率相关。随机 变量的不确定性越大,即概率小,其熵也就越大,将其搞清楚,所需的信息量也就越大。 -Pi * log(2, Pi) 求和。一个系统越混乱,则每个变量的概率越小,其熵也就越大。
信息论在通信编码的表示也是一样的,一个变量,在系统中的概率越小,其编码也就越长,因为短的编码要留给概率大的变量。即熵越大,其编码也就越长,这样压缩的效率就比较高。发送一段信息,其需要的编码长度(二进制),也就是 -Pi * log(2, Pi) 求和。或者,可以说,熵越大,信息量越大,一个概率较低的词,可能就是系统信息比较关键的词。
互信息:两个随机 变量的相关/依赖程度,可以用来解释一个变量已知时,另外一个变量的不确定的变化。即不确定信息的减少量。
自信息:一个随机变量(信源)发出的信息,这个信息所带来的信息量的度量。一次事件发生的提供的信息量-log(2, Pi),有时与熵的含义相同(当事件只发生一次时