模板笔记005 - 实战基础知识

模板源代码组织方式比较常见的是“包含模型”
说白一点,就是把cpp和h的代码都放到h中。
也可以把#include < “xx.cpp” >放到h头文件的最后(并不推荐这种)

除了包含模型,下面介绍一种显式实例化
举个例子:a.h a.cpp main.cpp 其中a.*是模板文件,main.cpp 用到了a.h ,
显式实例化就是在mian中包含a.cpp,且声明模板的实例化(就是将具体类型代替模板参数),说白一点,就是人工实例化模板,而不是自动实例化。

比较一下两者的优缺点:
优点:
包含模式只有一个.h文件,省去了链接错误;放在cpp里的实现不会内联,放在.h中的可能会内联。
显式实例化的h和cpp是分开的,头文件大小比包含模式的小很多。
缺点:
包含模式的声明和实现都放在头文件,很大,在大型项目中,编译链接会花费很多时间。
显式实例化(人工实例化)需要跟踪每个模板实例化,当项目大起来后,跟踪的维护代价很大。

一种是.h全包含,一种是平常的写法,但是放弃了编译器的自动模板实例化。
也可以整合一下包含模式和显示实例化两种:将cpp文件定义成hpp,视具体情况修改代码:
如果使用包含模式,直接include hpp,如果是显示实例化,就为需要进行显示实例化的模板提供声明。

值得提一下的是:c++新标准全使用的是包含模式。全都是.h文件。

除了包含模式和显示实例化模式,新标准还提供了一种分离模式来使用:
就是在每个模板的定义和声明之前加入export关键字,
由于各大编译器厂商对export的支持程度,还是建议使用包含模式,未来export可能是主流,也需要注意一下

内联函数可以提高程序的运行效率,这个效率比普通函数的调用效率更高
对于模板来说,对于短小的函数,使用inline显示声明是非常有价值的。

预编译

目的:提高编译速度
说明:一个老师,两个学生,目标是老师要教学生语数外,限制条件是只有一个教室
场景一:老师教A同学语文 外语 数学,之后教B同学数学 外语 语文
场景二:老师教A同学语文 外语 数学, 之后教A同学语文 外语 数学
场景三:老师同时教A和B 语数外
在这三个场景中,教室被完全利用上了,同学A和B都学会了,从效率上看场景3效率更高一些
接下来扩散一下:200个学生/一个老师/一个教室,想想看也只能选择场景3(平凡生活中包含了大道理)

对应于我们的程序,教学生对应源文件编译,学生ABC对应源文件,教会一个学生对应生成一个目标文件
学科对应源文件中包含的头文件。
从学习过渡到编译:如果我们在源文件中包含头文件时,对于一些使用频繁的头文件,如果我们使用固定的
顺序来包含,那在编译时,只需要编译一次。对于大型项目来说,编译是时可以节省不少时间。

做法:
写一个公共头文件,包含一些稳定的不常修改的头文件。不稳定的不包含。

题外话:之前看书时发现有这种处理方法,还没感觉出里面还藏着这个道理,路漫漫啊。

模板的错误信息一般比较长,但错误信息都包含了,需要耐心查看一下

什么是浅式实例化
场景:一个模板函数调用另一个模板函数,当层次比较深时,如果最底层的函数出了问题,那么错误信息会蔓延到最上层,错误信息就是一大堆
很难准确的把握住关键信息,c++之父提出了两种验证方法:提前使用参数;浅式实例化。
浅式实例化就是写哑代码来测试上层函数是否符合约束。
浅式实例化的缺点是 哑代码的开发比较复杂。 提前使用参数的方法以后会具体讲解

模板的错误信息还有另一个特点:长,特别是使用c++标准库时,1w字符的符号串经常看到。

跟踪程序
是一个测试例子,用于在开发早期检测模板的定义问题

总结一下:
模板代码组织方式大体有3种:包含模式、显示实例化、分离模式。不过包含模式最常用
分离模式因为编译器支持的限制,而没有普及
调试模板代码需要有耐心 因为调试信息比较多 模板实例可能包含很长的名字
预编译可以极大的提高编译速度,方法是公共头文件(不一定非得弄一个头文件,只要包含头文件的顺序个数一样即可)

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值