关闭

hdu 1848 博弈 难题 取石子 三堆

标签: Calgorithm
823人阅读 评论(0) 收藏 举报
分类:
Fibonacci again and again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3729    Accepted Submission(s): 1558


Problem Description
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
 

Input
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。
 

Output
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。
 

Sample Input
1 1 1
1 4 1
0 0 0
 

Sample Output
Fibo
Nacci
 

Author
lcy
 

Source
ACM Short Term Exam_2007/12/13


#include <iostream>  
   
   
using namespace std;  
   
const int maxn = 1001;  
int sg[maxn];  
int f[maxn];  
int hash[maxn];  
   
void getSG(int n){  
   
    int i,j;  
    memset(sg,0,sizeof(sg));  
    for(i = 1 ; i<= n ; ++i){  
        memset(hash,0,sizeof(hash));  
        for(j = 1 ; f[j] <= i ; ++j ){  
            hash[sg[i-f[j]]] = 1;  
        }  
   
        for(j = 0 ; j <= n ; ++j){  
            if(hash[j] == 0){  
                sg[i] = j;  
                break;  
            }  
        }  
    }  
}  
   
int main(){  
    int m,n,p;  
   
    f[0] = 1;  
    f[1] = 1;  
    int i ;  
    for(i = 2 ; i <= 16 ; ++i){//这里之所以取16是因为fib[16] 已经是 1597,已经大于n的最大值  
        f[i] = f[i - 1] + f[i - 2];  
    }  
    getSG(1000);  
    while(scanf("%d%d%d",&m,&n,&p)!=EOF,m||n||p){  
        if((sg[m]^sg[n]^sg[p]) == 0){//sg[m]^sg[n]^sg[p]外面别忘了加括号(),否则会WA  
            printf("Nacci\n");  
        }else{  
            printf("Fibo\n");  
        }  
    }  
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:297692次
    • 积分:5971
    • 等级:
    • 排名:第4230名
    • 原创:309篇
    • 转载:19篇
    • 译文:0篇
    • 评论:37条
    小流氓
    博客专栏
    文章分类
    最新评论