剑指offer-面试题34-丑数

题目描述

       把只包含因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。
思路分析:
       思路一:逐个判断每个整数是不是丑数的解法,直观但不高效(牛客网测试超时)
       所谓一个数m是另一个数n的因子,是指n能被m整数,也就是n%m==0。根据丑数的定义,丑数只能被2、3和5整数。也就是说如果一个数能被2整除,我们就把它连续除以2;如果能被3整数,就连续除以3;如果能被5整除,就除以连续5。如果最后我们得到的数字是1,那么这个数就是丑数,否则不是。该算法非常直观,代码也非常简洁,但最大的问题是每个整数都需要计算。即使一个数字不是丑数,我们还是需要对它做求余和除法操作。因此该算法的时间效率不够高,面试官也不会就此满足。
      思路二:创建数组保存已找到的丑数,用空间换时间的解法
       前面的算法之所以效率低,很大程度上是因为不管一个数是不是丑数,我们对它都要作计算。接下来我们试着找到一种只要计算丑数的方法,而不在非丑数的整数上浪费时间。根据丑数的定义,丑数应该是另一个丑数乘以2、3或者5的结果(1除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数,每一个丑数都是前面的丑数乘以2、3或者5得到的。
       这种思路的关键在于怎样确保数组里面的丑数是排好序的。假设数组中已经有若干个丑数排好序后放在数组中,并且把已有最大的丑数记做M,我们接下来分析如何生成下一个丑数。该丑数肯定是前面某一个丑数乘以2、3或者5的结果,所以我们首先考虑把已有的每个丑数乘以2。在乘以2的时候,可以得到多干个小于等于M的结果。由于是按顺序生成的,小于或者等于M肯定已经在数组中了,我们不需要再考虑;还会得到若干个大于M的结果,但我们只需要第一个大于M的结果,因为我们希望丑数是按照从小到大的顺序生成的,其他更大的结果以后再说。我们把得到的第一个乘以2后大于M的丑数记为M2。同样,我们把已有的每一个丑数乘以3和5,能得到第一个大于M的结果M3和M5。那么下一个丑数应该是M2、M3和M5这三个数的最小者了
       前面分析的时候,提到把已有的丑数分别乘以2、3和5。事实上这不是必须的,因为已有的丑数是按照顺序放在数组中的。对乘以2而言,肯定存在某一个丑数T2,排在它之前的每一个乘以2得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以2得到的结果都会太大。我们只需要记下这个丑数的位置,同时每次生成新的丑数的时候,取更新这个这个T2.对于乘以3和5而言,也存在着同样的T3和T5。    


1,逐个判断每个整数是不是丑数

package case34_UglyNumbers;
/**
 *题目:我们把只包含因子2、3 和5 的数称作丑数(Ugly Number)。求从小到大的顺序的第1500个丑数。
 *思路:逐个判断每个整数是不是丑数
 * @author WangSai
 *
 */
public class UglyNums {

	public static void main(String[] args) {
		UglyNums myUg = new UglyNums();
		System.out.println(myUg.getUglyNums(1));
	}
	//依次判断从1开始的每个数字是不是丑数
	private int getUglyNums(int index) {
		if(index<=0)
			return -1;
		int numbers=0;
		int uglyCount=0;
		while(uglyCount<index){
			numbers++;
			if(isUgly(numbers))
				uglyCount++;
		}
		//返回丑数
		return numbers;
	}
	//计算某一个数字是不是丑数
	private boolean isUgly(int number) {
		while(number%2==0)
			number/=2;
		while(number%3==0)
			number/=3;
		while(number%5==0)
			number/=5;		
		return number==1;
	}

}


2,创建数组保存已经找到的丑数,用空间换时间的解法

package case34_UglyNumbers;
/**
 *题目:我们把只包含因子2、3 和5 的数称作丑数(Ugly Number)。求从小到大的顺序的第1500个丑数。
 *思路:创建数组保存已经找到的丑数,用空间换时间的解法
 * @author WangSai
 *
 */
public class UglyNumOp {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		UglyNumOp myTest = new UglyNumOp();
		System.out.println(myTest.getUglyNumbers(11));
	}

	// 获取第index个丑数
	private int getUglyNumbers(int index) {
		if (index <= 0)
			return -1;
		// 数组保存index个丑数,并且arr[index-1]就是所要求的的丑数
		int[] arr = new int[index];
		arr[0] = 1;
		int nextIndex = 1;
		// T2位置的数字乘以2之后得到数据大于当前丑数序列,保存T2的位置。
		int T2 = 0;
		int T3 = 0;
		int T5 = 0;
		while (nextIndex < index) { // arr数组中丑数个数不到index个数
			int min = minOf3(arr[T2] * 2, arr[T3] * 3, arr[T5] * 5);
			arr[nextIndex] = min;
			while (arr[T2] * 2 <= arr[nextIndex])
				T2++;
			while (arr[T3] * 3 <= arr[nextIndex])
				T3++;
			while (arr[T5] * 5 <= arr[nextIndex])
				T5++;
			// 下一个丑数保存的位置
			nextIndex++;
		}
		return arr[index - 1];
	}

	// 获取i,j,k三个数中的最小者
	private int minOf3(int i, int j, int k) {
		int min = i < j ? i : j;
		min = min < k ? min : k;
		return min;
	}

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值