剑指offer-面试题66-矩阵中的路径

/**
 * Created by apple on 17/6/2.
 *
 * @author WangSai
 *         <p>
 *         题目要求:请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。
 *         路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。
 *         如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。
 *         例如
 *         a b c e
 *         s f c s
 *         a d e e
 *         矩阵中包含一条字符串”bcced”的路径,但是矩阵中不包含
 *         ”abcb”路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次
 *         进入该格子。
 *         分析:回溯算法
 *         这是一个可以用回朔法解决的典型题。
 *         首先,在矩阵中任选一个格子作为路径的起点。如果路径上的第i个字符不是ch,那么这个格子不可能处在路径上的
 *         第i个位置。如果路径上的第i个字符正好是ch,那么往相邻的格子寻找路径上的第i+1个字符。除在矩阵边界上的
 *         格子之外,其他格子都有4个相邻的格子。重复这个过程直到路径上的所有字符都在矩阵中找到相应的位置。
 *           由于回朔法的递归特性,路径可以被开成一个栈。当在矩阵中定位了路径中前n个字符的位置之后,在与第n个字符对应的格子的周围都没有找到第n+1个
 *         字符,这个时候只要在路径上回到第n-1个字符,重新定位第n个字符。
 *           由于路径不能重复进入矩阵的格子,还需要定义和字符矩阵大小一样的布尔值矩阵,用来标识路径是否已经进入每个格子。 当矩阵中坐标为(row,col)的
 *         格子和路径字符串中相应的字符一样时,从4个相邻的格子(row,col-1),(row-1,col),(row,col+1)以及(row+1,col)中去定位路径字符串中下一个字符
 *         如果4个相邻的格子都没有匹配字符串中下一个的字符,表明当前路径字符串中字符在矩阵中的定位不正确,我们需要回到前一个,然后重新定位。
 *           一直重复这个过程,直到路径字符串上所有字符都在矩阵中找到合适的位置
 */

public class MatrixPath {
    public static void main(String[] args) {
        char[] matrix = "abcesfcsadee".toCharArray();
        int rows = 3;
        int colms = 4;
        char[] str1 = "bcced".toCharArray();
        char[] str2 = "abcb".toCharArray();
        System.out.println("true:" + hasPath(matrix, rows, colms, str1));
        System.out.println("false:" + hasPath(matrix, rows, colms, str2));
    }

    /**
     * @param matrix,一维数组模拟二维数组,matrix为一维数组
     * @param rows,二维数组的行数
     * @param colms,二维数组的列数
     * @param str,要寻找的字符串
     * @return true,存在该路径;false不存在该路径
     */
    public static boolean hasPath(char[] matrix, int rows, int colms, char[] str) {
        //保存是否遍历过对应的位,visted[]数组初始化时,默认全部为false
        boolean[] visted = new boolean[matrix.length];
        //从矩阵中的每一个位置作为起始点开始遍历
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < colms; j++) {
                //只要找到一条路径就返回
                if (helper(matrix, rows, colms, i, j, str, 0, visted))
                    return true;
            }
        }
        return false;
    }

    /**
     * 通过递归的方式完成路径的查找
     *
     * @param matrix,一维数组模拟二维矩阵
     * @param rows,二维矩阵的行数
     * @param colms,二维矩阵的列数
     * @param i,当前行的坐标
     * @param j,当前列的坐标
     * @param str,待寻找的字符串
     * @param k,带寻找的字符串的第k个字符
     * @param visted,状态数组,标识二维数组中的位置是否被寻找过
     * @return true,当前寻找过的路径的前n个字符与字符串str的前n个字符相同;否则,返回false
     */
    private static boolean helper(char[] matrix, int rows, int colms, int i, int j, char[] str, int k, boolean[] visted) {
        //二维矩阵位置对应的一维数组的位置
        int index = i * colms + j;
//        System.out.println("i:" + i+"---colms:"+colms+"---j:"+j);
//        System.out.println(index);
        if (i < 0 || j < 0 || i >= rows || j >= colms || visted[index] || matrix[index] != str[k]) {
            return false;
        }
        //数组转成一维数组之后对应的位置是否被遍历过
        visted[index] = true;
        if (k == str.length - 1) {
            return true;
        }
        if (helper(matrix, rows, colms, i - 1, j, str, k + 1, visted)
                || helper(matrix, rows, colms, i + 1, j, str, k + 1, visted)
                || helper(matrix, rows, colms, i, j - 1, str, k + 1, visted)
                || helper(matrix, rows, colms, i, j + 1, str, k + 1, visted)) {
            return true;
        }
        //回溯法
        visted[index] = false;
        return false;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值