/**
* Created by apple on 17/6/2.
*
* @author WangSai
* <p>
* 题目要求:请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。
* 路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。
* 如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。
* 例如
* a b c e
* s f c s
* a d e e
* 矩阵中包含一条字符串”bcced”的路径,但是矩阵中不包含
* ”abcb”路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次
* 进入该格子。
* 分析:回溯算法
* 这是一个可以用回朔法解决的典型题。
* 首先,在矩阵中任选一个格子作为路径的起点。如果路径上的第i个字符不是ch,那么这个格子不可能处在路径上的
* 第i个位置。如果路径上的第i个字符正好是ch,那么往相邻的格子寻找路径上的第i+1个字符。除在矩阵边界上的
* 格子之外,其他格子都有4个相邻的格子。重复这个过程直到路径上的所有字符都在矩阵中找到相应的位置。
* 由于回朔法的递归特性,路径可以被开成一个栈。当在矩阵中定位了路径中前n个字符的位置之后,在与第n个字符对应的格子的周围都没有找到第n+1个
* 字符,这个时候只要在路径上回到第n-1个字符,重新定位第n个字符。
* 由于路径不能重复进入矩阵的格子,还需要定义和字符矩阵大小一样的布尔值矩阵,用来标识路径是否已经进入每个格子。 当矩阵中坐标为(row,col)的
* 格子和路径字符串中相应的字符一样时,从4个相邻的格子(row,col-1),(row-1,col),(row,col+1)以及(row+1,col)中去定位路径字符串中下一个字符
* 如果4个相邻的格子都没有匹配字符串中下一个的字符,表明当前路径字符串中字符在矩阵中的定位不正确,我们需要回到前一个,然后重新定位。
* 一直重复这个过程,直到路径字符串上所有字符都在矩阵中找到合适的位置
*/
public class MatrixPath {
public static void main(String[] args) {
char[] matrix = "abcesfcsadee".toCharArray();
int rows = 3;
int colms = 4;
char[] str1 = "bcced".toCharArray();
char[] str2 = "abcb".toCharArray();
System.out.println("true:" + hasPath(matrix, rows, colms, str1));
System.out.println("false:" + hasPath(matrix, rows, colms, str2));
}
/**
* @param matrix,一维数组模拟二维数组,matrix为一维数组
* @param rows,二维数组的行数
* @param colms,二维数组的列数
* @param str,要寻找的字符串
* @return true,存在该路径;false不存在该路径
*/
public static boolean hasPath(char[] matrix, int rows, int colms, char[] str) {
//保存是否遍历过对应的位,visted[]数组初始化时,默认全部为false
boolean[] visted = new boolean[matrix.length];
//从矩阵中的每一个位置作为起始点开始遍历
for (int i = 0; i < rows; i++) {
for (int j = 0; j < colms; j++) {
//只要找到一条路径就返回
if (helper(matrix, rows, colms, i, j, str, 0, visted))
return true;
}
}
return false;
}
/**
* 通过递归的方式完成路径的查找
*
* @param matrix,一维数组模拟二维矩阵
* @param rows,二维矩阵的行数
* @param colms,二维矩阵的列数
* @param i,当前行的坐标
* @param j,当前列的坐标
* @param str,待寻找的字符串
* @param k,带寻找的字符串的第k个字符
* @param visted,状态数组,标识二维数组中的位置是否被寻找过
* @return true,当前寻找过的路径的前n个字符与字符串str的前n个字符相同;否则,返回false
*/
private static boolean helper(char[] matrix, int rows, int colms, int i, int j, char[] str, int k, boolean[] visted) {
//二维矩阵位置对应的一维数组的位置
int index = i * colms + j;
// System.out.println("i:" + i+"---colms:"+colms+"---j:"+j);
// System.out.println(index);
if (i < 0 || j < 0 || i >= rows || j >= colms || visted[index] || matrix[index] != str[k]) {
return false;
}
//数组转成一维数组之后对应的位置是否被遍历过
visted[index] = true;
if (k == str.length - 1) {
return true;
}
if (helper(matrix, rows, colms, i - 1, j, str, k + 1, visted)
|| helper(matrix, rows, colms, i + 1, j, str, k + 1, visted)
|| helper(matrix, rows, colms, i, j - 1, str, k + 1, visted)
|| helper(matrix, rows, colms, i, j + 1, str, k + 1, visted)) {
return true;
}
//回溯法
visted[index] = false;
return false;
}
}
剑指offer-面试题66-矩阵中的路径
最新推荐文章于 2017-06-15 01:21:38 发布