UVA 11361 - Investigating Div-Sum Property-数位DP

原创 2016年08月28日 22:56:20

 

转移方程很好写

开3维存储,dp[len][sum][Mul]

sum,mul代表取模的i~n位的各数字和,以及其代表的数对k取模的值


可知 sum最大为10*10,而mul可能很大,即最大可能是k,也就是10000,

mul开1w也不会超时,跑了500ms,但是实际可以测试发现,k超过100基本都是0了,因为 各位数和加起来能整除100的几乎只有10 10 10 10 10。。。了  那样大的数不会有几个的。。。所以也就是说,k最大取不到100,mul当然也开100足够了


 

#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;
typedef long long   ll;
const int maxn=100+5;
 int aa[12];
  int dp[11][maxn][110];//int dp[11][maxn][10005];
//    pos    = 当前处理的位置(一般从高位到低位)
//    pre    = 上一个位的数字(更高的那一位)
//    status = 要达到的状态,如果为1则可以认为找到了答案,到时候用来返回,
//            给计数器+1。
//    limit  = 是否受限,也即当前处理这位能否随便取值。如567,当前处理6这位,
//            如果前面取的是4,则当前这位可以取0-9。如果前面取的5,那么当前
//            这位就不能随便取,不然会超出这个数的范围,所以如果前面取5的
//            话此时的limit=1,也就是说当前只可以取0-6。
//

//    用DP数组保存这2个状态是因为往后转移的时候会遇到很多重复的情况。
//可根据需要增加维数,例如pre
int k;
ll  dfs(int pos,int sum,int flag,int mul)
{
    ll ans=0;
    if (pos==0)    //已结搜到尽头,返回"是否找到了答案"这个状态。
    {
        if (sum%k==0&&mul%k==0) return 1;
        else return 0;
    }
    //DP里保存的是完整的,也即不受限的答案,所以如果满足的话,可以直接返回。
     if (!flag &&dp[pos][sum][mul]!=-1) return dp[pos][sum][mul];
    int up;
    if (flag) up=aa[pos];
    else up=9;
    //根据是否受限确定枚举的上界
    for (int i=0; i<=up; i++)
    {
        int ff;
        if (!flag) ff=0;
        else
        {
            if (i==up) ff=1;
            else ff=0;
        }
        ans +=dfs(pos-1,(sum+i)%k,ff,(mul*10+i)%k);
    }
    //DP里保存完整的、取到尽头的数据
    if (!flag)
      dp[pos][sum][mul]=ans;
    return ans;

}
int main()
{

    int tt,cas=0;
    scanf("%d",&tt);
    int cnt=1;
    while (tt--)
    {
        
         memset(dp,-1,sizeof dp);
         int a,b;
        scanf("%d%d%d",&a,&b,&k);
        if (k>=100 ) {printf("0\n"); continue;;}
        int len=0;
        while(b)
        {
            aa[++len]=b%10;
            b/=10;
        }
        ll ans1=dfs(len,0,1,0);
        len=0;
        b=a-1;
        while(b)
        {
            aa[++len]=b%10;
            b/=10;
        }
        ll ans2=dfs(len,0,1,0);

        printf("%lld\n",ans1-ans2);

    }
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

uva 11361 Investigating Div-Sum Property 数位dp

// uva 11361 Investigating Div-Sum Property 数位dp // // 题目大意: // // 给你一个整数a和一个整数b,问在[a,b]范围内,有多少个...

UVa 11361 Investigating Div-Sum Property

这道题居然提交了十次才过....期间小问题不断。思路的话基本是《训练指南》里面来的,不过有几个小问题需要注意一下。第一,当K在大于100的情况下,就直接输出0就可以了。因为a,b不超过2^31,可以估...

UVa11361 Investigating Div-Sum Property

给定整数 A ,B ,K 求 区间[A, B] 中被 K 整除且各位数之和被 K 整除的数有多少个,1 ...

数位DP(数字和与倍数,uva 11361)

这道题拖了一整天,WA了无数发,感觉自己数位DP特别弱,其实可能就是因为自己数学比较弱,或者说在推导和代入繁杂的公式以及边界很粗糙的讨论上太不够严谨了,总是觉得大概对就对了,这在数学题上是非常致命的缺...

uva11361(数论DP)

题意: 基本是看了大白上的思路,然后还参考了http://blog.csdn.net/lenleaves/article/details/9104417 统计大于等于a,小于等于b...

【SPOJ KPSUM】The sum(数位DP)

题目大意: 把1到N的数按顺序写出来,在每两个数位之间交替地添加+-号,求最后的和。如下: 1,2,3,4,5,6,7,8,9,10,11,12→1-2+3-4+5-6+7-8+9-1+0-1+1...
  • can919
  • can919
  • 2017年07月16日 21:38
  • 89

uva 1640 两种方法 数位dp或枚举计算

对于区间计数问题,一般都是令F {i}(n)为[0,n]之间i出现的次数,再去区间相减就可以了 第一种方法: 例如 4321,分别求0-3999,4000-4299,4300-4319,4320+...

【HDU5648 BestCoder Round 76 (div1)C】【打表or数位DP】DZY Loves Math nm范围内i和j i或j的gcd之和

DZY Loves Math    Accepts: 20    Submissions: 78  Time Limit: 10000/5000 MS (Java/Others)   ...

Codeforces 507D (Round #287(div.2))D. The Maths Lecture【数位DP】

题目地址:http://codeforces.com/contest/507/problem/D 题意: 给出n,k,m,问满足一下条件的数字有多少: 1.这个数刚好有n位; 2.这个数存在某...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:UVA 11361 - Investigating Div-Sum Property-数位DP
举报原因:
原因补充:

(最多只允许输入30个字)