关闭

cf#369-D - Directed Roads-dfs找环

107人阅读 评论(0) 收藏 举报
分类:

http://codeforces.com/contest/711/problem/D


给一个图,n点n边,   问有多少个边集  翻转其方向 后使得整个图不存在任一个有向环。


那么直接dfs找出一个联通分量,然后根据深度判一下环的长度为huan,该联通分量点数为tol

那么答案就是 乘上  (2^huan)-2   +    2^tol ,  环的情况减二是因为 去掉两个怎么翻都是环的情况(正环和反环)


注意预处理一下2的幂,取模,然后就没了。。。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;

const double pi=acos(-1.0);
double eps=0.000001;
typedef long long  ll;
const int N=2*100000+50;
int vis[N];
vector<int > mp[N];
int tol,huan,tmp;
ll mod=1e9+7;
int dep[N];
long long powe_m(long long  a,long long  b )
{
    long long ans=1;
    long long tmp=a;
    while(b!=0)
    {
        if (b&1)
            ans=ans*tmp%mod;
        tmp=tmp*tmp%mod;
        b=b>>1;
    }
    return ans;
}
ll two[N];
void dfs(int x,int h)
{
    tol++;
    vis[x]=1;
    dep[x]=h;
    for (int i=0;i<mp[x].size();i++)
    {
        int v=mp[x][i];
        if (dep[v])
        {
            huan=dep[x]-dep[v]+1;
            break;
        }
        if (vis[v]) break;
        dfs(v,h+1);
    }
    dep[x]=0;
}
int  main()
{
    ll n,m,k;
    cin>>n;
    two[0]=1;
    for (int i=1;i<=n;i++)
        two[i]=two[i-1]*2%mod;
    int x;
    for (int i=1; i<=n; i++)
    {
        scanf("%d",&x);
        mp[i].push_back(x);
    }
    ll ans=1;
    for (int i=1; i<=n; i++)
    {
        if (vis[i] )continue;
        tol=0;
        huan=0;
        dfs(i ,1);
        if(huan )
        ans= ans* ((two[huan]-2+mod)%mod)%mod*two[tol-huan]%mod;
        else
        ans= ans  *two[tol]%mod;
    }
    printf("%lld\n",(ans%mod+mod)%mod);


    return 0;


}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:201482次
    • 积分:8684
    • 等级:
    • 排名:第2272名
    • 原创:735篇
    • 转载:4篇
    • 译文:0篇
    • 评论:26条
    233
    文章分类
    最新评论