cf#369-D - Directed Roads-dfs找环

原创 2016年08月30日 17:48:53

http://codeforces.com/contest/711/problem/D


给一个图,n点n边,   问有多少个边集  翻转其方向 后使得整个图不存在任一个有向环。


那么直接dfs找出一个联通分量,然后根据深度判一下环的长度为huan,该联通分量点数为tol

那么答案就是 乘上  (2^huan)-2   +    2^tol ,  环的情况减二是因为 去掉两个怎么翻都是环的情况(正环和反环)


注意预处理一下2的幂,取模,然后就没了。。。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;

const double pi=acos(-1.0);
double eps=0.000001;
typedef long long  ll;
const int N=2*100000+50;
int vis[N];
vector<int > mp[N];
int tol,huan,tmp;
ll mod=1e9+7;
int dep[N];
long long powe_m(long long  a,long long  b )
{
    long long ans=1;
    long long tmp=a;
    while(b!=0)
    {
        if (b&1)
            ans=ans*tmp%mod;
        tmp=tmp*tmp%mod;
        b=b>>1;
    }
    return ans;
}
ll two[N];
void dfs(int x,int h)
{
    tol++;
    vis[x]=1;
    dep[x]=h;
    for (int i=0;i<mp[x].size();i++)
    {
        int v=mp[x][i];
        if (dep[v])
        {
            huan=dep[x]-dep[v]+1;
            break;
        }
        if (vis[v]) break;
        dfs(v,h+1);
    }
    dep[x]=0;
}
int  main()
{
    ll n,m,k;
    cin>>n;
    two[0]=1;
    for (int i=1;i<=n;i++)
        two[i]=two[i-1]*2%mod;
    int x;
    for (int i=1; i<=n; i++)
    {
        scanf("%d",&x);
        mp[i].push_back(x);
    }
    ll ans=1;
    for (int i=1; i<=n; i++)
    {
        if (vis[i] )continue;
        tol=0;
        huan=0;
        dfs(i ,1);
        if(huan )
        ans= ans* ((two[huan]-2+mod)%mod)%mod*two[tol-huan]%mod;
        else
        ans= ans  *two[tol]%mod;
    }
    printf("%lld\n",(ans%mod+mod)%mod);


    return 0;


}


版权声明:本文为博主原创文章,未经博主允许不得转载。

用SPFA判断负环的方法及其优化

判负环的优化
  • wyh0410
  • wyh0410
  • 2016年11月03日 15:40
  • 2528

用深度遍历dfs判断一个有向图是否有环

这里有一个无向图的深度遍历算法,无向图 深度优先遍历 c语言实现, 有向图的DFS遍历跟这个算法一样。 利用DFS判断一个有向图是否有环的思路是:对一个节点v进行深度遍历,判断是否能从v到达自己这个...
  • x_i_y_u_e
  • x_i_y_u_e
  • 2015年09月07日 16:40
  • 3745

基于DFS的求欧拉回路算法

1、拓扑排序 KAHN算法实现: 设一个有向图,存在一个入度=0,并有出度的点; **遍历所有点的出度和入度,找到入度为0的点,显示该点 **并且去掉图中有关该点的狐 **重复上述两个操作 执行过...
  • u013755250
  • u013755250
  • 2016年03月26日 21:32
  • 1470

Codeforces Round #369 (Div. 2) -- D. Directed Roads (DFS找环)

大体题意: 给你一个有向图,可能会有环,你的操作是反向一条路,求得使得图中没有环所有方案数? 思路: 假如图中没有环的话,有n条边,答案就是2^n 如果有个m边的环,间接法考虑,总方案是2^m...
  • aozil_yang
  • aozil_yang
  • 2016年09月03日 13:29
  • 245

Codeforces Round #369 (Div. 2) D. Directed Roads (dfs+组合数学 图论)

传送门:D. Directed Roads 描述: D. Directed Roads time limit per test 2 seconds memory li...
  • guhaiteng
  • guhaiteng
  • 2016年08月30日 19:06
  • 351

Codeforces 369 D.Directed Roads(数学,判断图中每个环的边数)

题目链接 D. Directed Roads time limit per test 2 seconds memory limit per test 256 megaby...
  • fouzhe
  • fouzhe
  • 2016年09月03日 10:16
  • 257

Codeforces #369 div2 D.Directed Roads

codeforces
  • hahatianx
  • hahatianx
  • 2016年09月02日 21:21
  • 188

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量+组合计数

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量题目链接:[Codeforces Round #369 (Div. 2)D. D...
  • ACMore_Xiong
  • ACMore_Xiong
  • 2016年08月31日 13:33
  • 436

Codeforces Round #369 (Div. 2) D. Directed Roads

题目链接题意:给你一个n个点,n条有向边的图,你可以使任意条边反向,但是每条边只能反向一次,请求出使图不存在环的所有方案数量仔细思考我们发现,对于一个点数为x的环,除去全部不反向和全部反向两种情况,其...
  • naipp
  • naipp
  • 2016年08月30日 23:28
  • 123

CodeForces 369 div2 D Directed Roads 图论 数论

D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes ...
  • HandsomeHow
  • HandsomeHow
  • 2016年08月30日 18:50
  • 249
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:cf#369-D - Directed Roads-dfs找环
举报原因:
原因补充:

(最多只允许输入30个字)