关闭

cf/Codeforces ECR16-D - Two Arithmetic Progressions-中国剩余定理

255人阅读 评论(0) 收藏 举报
分类:

Problem ECR16-D - Two Arithmetic Progressions-

题目大意

 给两个等差数列 You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such that L ≤ x ≤ R andx = a1k' + b1 = a2l' + b2, for some integers k', l' ≥ 0.  

给一个L,R,问L到R里有多少个x满足  x = a1k' + b1 = a2l' + b2,

   数据范围:a1,a2,b1,b2,L,R <= 10^18。

解题分析

   其实题目的式子可以转化为两个模仿方程,也就是 x=b1(mod a1 )  ,x=b2(mod a2 )

由于a1,a2并不互质,不能直接用中国剩余定理,我们需要通过把式子都合并起来,再使用中国剩余定理

  如果两个式子不能合并,那么就是找不到x,输出0,否则就找一个比L小的 正解cur,然后看看cur到L-1里有多少个解,cur到R里有多少个解。


由于题目的直线斜率是正的,因此 x的最小取值为max(b1,b2),L取max(L,max(b1,b2))

 


参考程序


 

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef long long ll;
const int N = 1005;

ll a[N], m[N];

ll gcd(ll a,ll b)
{
    return b? gcd(b, a % b) : a;
}

void extend_Euclid(ll a, ll b, ll &x, ll &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return;
    }
    extend_Euclid(b, a % b, x, y);
    ll tmp = x;
    x = y;
    y = tmp - (a / b) * y;
}

ll Inv(ll a, ll b)
{
    ll d = gcd(a, b);
    if(d != 1) return -1;
    ll x, y;
    extend_Euclid(a, b, x, y);
    return (x % b + b) % b;
}

bool merge(ll a1, ll m1, ll a2, ll m2, ll &a3, ll &m3)
{
    ll d = gcd(m1, m2);
    ll c = a2 - a1;
    if(c % d) return false;
    c = (c % m2 + m2) % m2;
    m1 /= d;
    m2 /= d;
    c /= d;
    c *= Inv(m1, m2);
    c %= m2;
    c *= m1 * d;
    c += a1;
    m3 = m1 * m2 * d;
    a3 = (c % m3 + m3) % m3;
    return true;
}
ll cur,mm;
ll CRT(ll a[], ll m[], int n)
{
    ll a1 = a[1];
    ll m1 = m[1];
    for(int i=2; i<=n; i++)
    {
        ll a2 = a[i];
        ll m2 = m[i];
        ll m3, a3;
        if(!merge(a1, m1, a2, m2, a3, m3))
            return -1;
        a1 = a3;
        m1 = m3;
    }
    cur=a1,mm=m1;
    return (a1 % m1 + m1) % m1;
}

int main()
{
    int n=2;
    ll L,R;
    for(int i=1; i<=n; i++)
        scanf("%lld%lld",&m[i], &a[i]);
    scanf("%lld%lld",&L,&R);
    ll ans = CRT(a, m, n);
    if (ans==-1)
    {
        printf("0\n");
        return 0;
    }
    L=max(L,max(a[1],a[2]));        //***
    //cal ans between [L-1,R]
    ans=0;
    if (cur>=L) cur-=((cur-L)/mm+1)*mm;  //find a cur that < L
    if (L<=R)
        ans= (R-cur)/mm-(L-1-cur)/mm;

    printf("%lld\n",ans);

    return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:204722次
    • 积分:8710
    • 等级:
    • 排名:第2279名
    • 原创:735篇
    • 转载:4篇
    • 译文:0篇
    • 评论:26条
    233
    文章分类
    最新评论