关闭

win10下usb rndis驱动配置

win10下usb rndis驱动会默认识别为com口,需要手动更新驱动。 先下载kindle_rndis.inf_amd64-v1.0.0.1,然后以管理员身份运行第五个cmd文件,然后在设备管理器里的USB串口识别出的COM口处双击,在计算机中查找驱动程序,即下载解压后的那个文件夹,然后网络适配器中就有RNDIS驱动了。 参考网址:https://www.mobileread.com/for...
阅读(21) 评论(0)

最大似然估计(MLE)和最大后验概率(MAP)

转载自:最大似然估计(MLE)和最大后验概率(MAP) 最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。 最...
阅读(21) 评论(0)

机器学习中的范数规则化之(一)L0、L1与L2范数

转载自:http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0、L1与L2范数zouxy09@qq.comhttp://blog.csdn.net/zouxy09        今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参...
阅读(31) 评论(0)

漫谈:机器学习中距离和相似性度量方法

转载自:[漫谈:机器学习中距离和相似性度量方法](http://www.cnblogs.com/daniel-D/p/3244718.html)  在机器学习和数据挖掘中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如 K 最近邻(KNN)和 K 均值(K-Means)等等。根据数据特性的不同,可以采用不同的度量方法。一般...
阅读(20) 评论(0)

数据库相关操作

一、基本操作 登录: mysql -uroot -p123456 导入sql文件: ssh < F:\xx项目\ssh框架\ssh.sql 查看数据库: show databases; (注意分号) 连接数据库: use 查看表: show tables; (注意分号) 退出: quit或者exit 二、创建数据库并插入数据 新建数据库:CREATE D...
阅读(32) 评论(0)

springMVC学习笔记

一、关键技术AOP(Aspect Oriented Program,面向切面编程) 在运行时,动态地将代码切入到类的指定方法、指定位置上的编程思想就是面向切面的编程。 我们知道,面向对象的特点是继承、多态和封装。而封装就要求将功能分散到不同的对象中去,这在软件设计中往往称为职责分配。实际上也就是说,让不同的类设计不同的方法。这样代码就分散到一个个的类中去了。这样做的好处是降低了代码的复杂程度,...
阅读(84) 评论(0)

机器学习中使用的神经网络第三讲笔记:线性/逻辑神经网络和BackPropagation

转载自:https://marcovaldong.github.io/2016/05/05/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E4%B8%AD%E4%BD%BF%E7%94%A8%E7%9A%84%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%AC%AC%E4%B8%89%E8%AE%B2%EF%BC%9A%E7%BA%BF%E...
阅读(169) 评论(0)

机器学习中使用的神经网络第二讲笔记:神经网络的结构和感知机

转载自: [机器学习中使用的神经网络第二讲笔记:神经网络的结构和感知机](https://marcovaldong.github.io/2016/05/04/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E4%B8%AD%E4%BD%BF%E7%94%A8%E7%9A%84%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%AC%AC%E4...
阅读(88) 评论(0)

最小二乘回归树Python实现——统计学习方法第五章课后题

李航博士《统计学习方法》第五章第二题,试用平方误差准则生成一个二叉回归树。 输入数据为: x     0            1          2         3         4         5         6         7         8         9y    4,5       4.75      4.91    5.34    5.80    7....
阅读(108) 评论(0)

大数据时代,参数怎么降维?

原标题:大数据时代,参数怎么降维? 小编在《数学模型教你如何成为星际争霸高手·上篇》[1]中提到过,参数估计(在数学上又称为反问题)往往比数学建模本身更为复杂。小编近日在研究阿尔兹海默症(Alzheimer’s Disease,老年痴呆症的一种,已有上百年历史)的形成机制时对此深有体会。经多方总结,总算大体弄清楚了该病症的形成机理,得出如下图表[2]: 大家只需知道在这个复杂的网络...
阅读(350) 评论(0)

TensorFlow四种Cross Entropy算法实现和应用

交叉熵(Cross Entropy)是Loss函数的一种(也称为损失函数或代价函数),用于描述模型预测值与真实值的差距大小...
阅读(91) 评论(0)

独热编码(One-Hot Encoding)及在CNN中的应用

比如 sex:[“male”, “female”] country: [‘china’,’USA’,’Japan’] 正常数字量化后: “male”, “female”用0,1表示; ‘china’,’USA’,’Japan’用0,1,2表示。 现在有3个样本: [‘male’,‘USA’], [‘male’,‘Japan’], [‘female’,’China’] 处理后:...
阅读(355) 评论(0)

用python计算大文件夹下小文件夹里文件的个数

# -*- coding: utf-8 -*- #计算人脸图片集中每个文件夹里图片的个数 #编辑器为python2.7import oscount1 = 0 #计数大文件夹下共有多少个小文件夹 for filename in os.listdir('F:/2017110215/MachineVision/22'): #print filename count1 += 1 pri...
阅读(202) 评论(0)

OpenCV for Python 学习笔记

转载自:http://www.cnblogs.com/pakfahome/p/3914318.html给源图像增加边界cv2.copyMakeBorder(src,top, bottom, left, right ,borderType,value) src:源图像top,bottem,left,right: 分别表示四个方向上边界的长度borderType: 边界的类型有以下几种: BORDER_...
阅读(53) 评论(0)

python中的with

with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的“清理”操作,释放资源,比如文件使用后自动关闭、线程中锁的自动获取和释放等。         with从Python 2.5就有,需要from __future__ import with_statement。自python 2.6开始,成为默认关键字。在What’s new in python2.6/3.0中,...
阅读(66) 评论(0)
45条 共3页1 2 3 下一页 尾页
    个人资料
    • 访问:20163次
    • 积分:469
    • 等级:
    • 排名:千里之外
    • 原创:23篇
    • 转载:22篇
    • 译文:0篇
    • 评论:4条
    最新评论