• 我的消息
  • 我的博客
  • 我的学院
  • 我的下载
  • 我的收藏
  • 消息
  • 搜索条件:
    点击返回全部
    全部文章 > {categoryName }
    • (转)机器学习实战第三章——决策树(源码解析)

      转载自:http://blog.csdn.net/quincuntial/article/details/50477508 创建树#coding=utf-8 ''''' Created on ...

      转载
      2017-11-28 10:52:28
      50
      0
    • python中的sorted、iteritems和operator.itemgetter

      最近在看《机器学习实战》,在学到第三章递归构建决策树时看到以下代码:def majorityCnt(classList): classCount = {} for vote in cl...

      原创
      2017-11-27 19:07:09
      42
      0
    • 隐马尔可夫模型

      隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。隐藏的马尔可夫链随机生成的状态的序列,称为状态序列(st...

      原创
      2017-11-27 17:07:30
      31
      0
    • 解决过拟合的方式(二):早停

      另⼀种控制⽹络的复杂度的正则化⽅法是早停⽌( early stopping )。对于许多⽤于⽹络训练的最优化算法(例如共轭梯度法),误差函数是⼀个关于迭代次数的不增函数。然⽽,在独⽴数据(通常被称为验...

      原创
      2017-11-20 14:17:36
      24
      0
    • 解决过拟合的方式(一):正则化

      一、过拟合监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。最小化误差是为了让...

      原创
      2017-11-20 11:32:03
      85
      0
    • RBF径向基网络

      一、径向基函数径向基函数是某种沿径向对称的标量函数,通常定义为样本到数据中心之间径向距离(通常是欧氏距离)的单调函数(由于距离是径向同性的)。RBF核是一种常用的核函数。它是支持向量机分类中最为常用的...

      原创
      2017-11-20 10:09:48
      45
      0
    • 机器学习中的各种损失/误差函数

      一、均方误差 二、 三、 四、损失函数和激活函数的组合 1.均方差损失函数+Sigmoid激活函数(不推荐) 对于Sigmoid,当z的取值越来越大后,函数曲线变得越来越平缓,意味着此时的导...

      原创
      2017-11-10 17:49:49
      24
      0
    • 神经网络中的各种激活函数

      一、激活函数简介 1.激活函数的作用 如下图,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function。不一定是step...

      原创
      2017-11-10 10:26:20
      44
      0
    • 解决过拟合的方法

      一、正则化 保留所有的特征,但是减少参数的大小( magnitude) 二、降维 丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征, 或者使用一些模型选择的算法来帮忙(例如 PCA...

      原创
      2017-11-09 21:43:19
      20
      0
    • 范数与距离的关系以及在机器学习中的应用

      1 范数 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| >= 0,齐次性||cx|...

      转载
      2017-11-07 11:21:53
      33
      0
  • 学院
  • 下载
  • 消息