poj 2914 无向图最小割

转载 2012年03月27日 09:11:14
最小割集◎Stoer-Wagner算法

一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集;最小割集当然就权和最小的割集。
可以用最小切割最大流定理:
1.min=MAXINT,确定一个源点
2.枚举汇点
3.计算最大流,并确定当前源汇的最小割集,若比min小更新min
4.转到2直到枚举完毕
5.min即为所求输出min
不难看出复杂度很高:枚举汇点要O(n),最短增广路最大流算法求最大流是O((n^2)m)复杂度,在复杂网络中O(m)=O(n^2),算法总复杂度 就是O(n^5);哪怕采用最高标号预进流算法求最大流O((n^2)(m^0.5)),算法总复杂度也要O(n^4)
所以用网络流算法求解最小割集复杂度不会低于O(n^4)。
---------
prim算法不仅仅可以求最小生成树,也可以求“最大生成树”。最小割集Stoer-Wagner算法就是典型的应用实例。
求解最小割集普遍采用Stoer-Wagner算法,不提供此算法证明和代码,只提供算法思路:
1.min=MAXINT,固定一个顶点P
2.从点P用类似prim的s算法扩展出“最大生成树”,记录最后扩展的顶点和最后扩展的边
3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min
4.合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并,这个好理解吧?)
5.转到2,合并N-1次后结束
6.min即为所求,输出min
prim本身复杂度是O(n^2),合并n-1次,算法复杂度即为O(n^3)
如果在prim中加堆优化,复杂度会降为O((n^2)logn)   
#include <iostream>
using namespace std;
int mat[600][600];
int res;
//Stoer-Wagner算法,加了自己看得懂的备注
//无向图全局最小割,用求prim类似方法o(n^3),学习了一个下午……
//一开始用枚举源点汇点的最大流求解,复杂度o(n^5) 超时

void Mincut(int n) {
    int node[600], dist[600];
    bool visit[600];
    int i, prev, maxj, j, k;
    for (i = 0; i < n; i++)
        node[i] = i;
    while (n > 1) {
        int maxj = 1;
        for (i = 1; i < n; i++) { //初始化到已圈集合的割大小
            dist[node[i]] = mat[node[0]][node[i]];
            if (dist[node[i]] > dist[node[maxj]])
                maxj = i;
        }
        prev = 0;
        memset(visit, false, sizeof (visit));
        visit[node[0]] = true;
        for (i = 1; i < n; i++) {
            if (i == n - 1) { //只剩最后一个没加入集合的点,更新最小割
                res = min(res, dist[node[maxj]]);
                for (k = 0; k < n; k++) //合并最后一个点以及推出它的集合中的点
                    mat[node[k]][node[prev]] = (mat[node[prev]][node[k]] += mat[node[k]][node[maxj]]);
                node[maxj] = node[--n]; //缩点后的图
            }
            visit[node[maxj]] = true;
            prev = maxj;
            maxj = -1;
            for (j = 1; j < n; j++)
                if (!visit[node[j]]) { //将上次求的maxj加入集合,合并与它相邻的边到割集
                    dist[node[j]] += mat[node[prev]][node[j]];
                    if (maxj == -1 || dist[node[maxj]] < dist[node[j]])
                        maxj = j;
                }
        }

    }
    return;
}

int main() {
    int n, m, a, b, v;
    while (scanf("%d%d", &n, &m) != EOF) {
        res = (1 << 29);
        memset(mat, 0, sizeof (mat));
        while (m--) {
            scanf("%d%d%d", &a, &b, &v);
            mat[a][b] += v;
            mat[b][a] += v;
        }
        Mincut(n);
        printf("%d\n", res);
    }
}


相关文章推荐

POJ 2914 Minimum Cut 全局最小割

题目:http://poj.org/problem?id=2914 题意:给定一个无向图,两点之间可以有很多边连接,问至少去掉多少条边可以把图分成两个不相连的子图 思路:可以把边数直接看成一条带权边,...

POJ2914 Minimum Cut(最小割模板题)

Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9122   A...

无向图全局最小边割集

转自      http://www.cppblog.com/imky/articles/123427.html    一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集;最小割...

求无向图最小割

无向图最小割stoer-wagner算法的详细说明和AC模板

Stoer-Wagner求无向图全局最小割

最小割Stoer-Wagner算法   割:在一个图G(V,E)中V是点集,E是边集。在E中去掉一个边集C使得G(V,E-C)不连通,C就是图G(V,E)的一个割; 最小割:在G(V...
  • pi9nc
  • pi9nc
  • 2013年10月07日 19:55
  • 4310

uvalive 6525——Attacking rooks(二分图匹配,好题!)

Chess inspired problems are a common source of exercises in algorithms classes. Starting with the we...

全局最小割Stoer-Wagner算法 时间复杂度(o^3)

以前做过一道全局最小割,今天复习时看到了,先记录下来。 给你一个N个点M条边的无向图,问它的最小割。 全局最小割Stoer-Wagner算法实现 时间复杂度O(N^3) 优化后可以达到O(...

poj 2914 Minimum Cut(无向图最小割)

题目链接 Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 78...

Poj 2914 无向图的全局最小割

题目链接:http://poj.org/problem?id=2914   一种求最小割的方法是Stoer-Wagner算法。它的核心在于这样一条定理:对于任意点s,t,无向图的最小割等于s,t的...

poj 2914 无向图最小割 Stoer-Wagner算法

题意: 最少删去多少条边使得图不再是单个双连通分量。 思路: 1.最小割思路,n 次网络流做法,TLE 2.Stoer-Wagner算法(模板),8000+ms,很有压力。 Stoer-Wagner算...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 2914 无向图最小割
举报原因:
原因补充:

(最多只允许输入30个字)