关闭

背包问题九讲

173人阅读 评论(0) 收藏 举报
分类:

01背包问题描述

已知:有一个容量为V的背包和N件物品,第i件物品的重量是weight[i],收益是cost[i]。

限制:每种物品只有一件,可以选择放或者不放

问题:在不超过背包容量的情况下,最多能获得多少价值或收益

相似问题:在恰好装满背包的情况下,最多能获得多少价值或收益

这里,我们先讨论在不超过背包容量的情况下,最多能获得多少价值或收益。

基本思路

01背包的特点:每种物品只有一件,可以选择放或者不放

子问题定义状态

  1. f[i][v] : 前i件物品放到一个容量为v的背包中可以获得最大价值  

状态转移方程

  1. f[i][v] = max(f[i - 1][v],f[i - 1][v - weight[i]] + cost[i])  

分析

考虑我们的子问题,将前i件物品放到容量为v的背包中,若我们只考虑第i件物品时,它有两种选择,放或者不放。

1) 如果第i件物品不放入背包中,那么问题就转换为:将前i - 1件物品放到容量为v的背包中,带来的收益f[i - 1][v]

2) 如果第i件物品能放入背包中,那么问题就转换为:将前i - 1件物品放到容量为v - weight[i]的背包中,带来的收益f[i - 1][v - weight[i]] + cost[i]

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:64917次
    • 积分:3412
    • 等级:
    • 排名:第10221名
    • 原创:277篇
    • 转载:6篇
    • 译文:0篇
    • 评论:17条
    最新评论