关闭

第四届河南省省赛 走迷宫(二分+DFS)

332人阅读 评论(0) 收藏 举报
分类:

http://acm.nyist.net/JudgeOnline/problem.php?pid=306

走迷宫

时间限制:1000 ms  |  内存限制:65535 KB
难度:5
描述
Dr.Kong设计的机器人卡多非常爱玩,它常常偷偷跑出实验室,在某个游乐场玩之不疲。这天卡多又跑出来了,在SJTL游乐场玩个不停,坐完碰碰车,又玩滑滑梯,这时卡多又走入一个迷宫。个迷宫是用一个N * N的方阵给出方阵中单元格中填充了一整数,表示走到这个位置的难度。

这个迷宫可以向上走,向下走,向右走,向左走,但是不能穿越对角线。迷宫的取胜规则很有意思,看谁能更快地找到一条路径,其路径上单元格最大难度值与最小难度值之差是最小的。当然了,或许这样的路径不是最短路径。

     机器人卡多现在在迷宫的左上角(第一行,第一列)而出口迷宫的右下角(第N行,第N列)。

卡多很聪明,很快就找到这样一条路径。你能找到吗?

输入
有多组测试数据,以EOF为输入结束的标志
第一行: N 表示迷宫是N*N方阵 (2≤ N≤ 100)
接下来有N行, 每一行包含N个整数,用来表示每个单元格中难度 (0≤任意难度≤120)。
输出
输出为一个整数,表示路径上最高难度与和最低难度的差。
样例输入
5
1 1 3 6 8
1 2 2 5 5
4 4 0 3 3
8 0 2 3 4
4 3 0 2 1
样例输出
2
二分 + DFS,枚举最大值,最小值和差值

#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <stack>
#include <vector>
#include <map>

using namespace std;

#define N 200
#define INF 0xfffffff
#define PI acos (-1.0)
#define EPS 1e-8
#define met(a, b) memset (a, b, sizeof (a))

typedef long long LL;

const int dir[4][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

int n, g[N][N], vis[N][N], maxn, minx, flag;

void DFS (int x, int y)
{
    vis[0][0] = 1;
    if (g[x][y]>maxn || g[x][y]<minx) return;

    if (x==n-1 && y==n-1)
    {
        flag = 1;
        return;
    }

    for (int i=0; i<4; i++)
    {
        int xx = x + dir[i][0];
        int yy = y + dir[i][1];

        if (xx>=0 && xx<n && yy>=0 && yy<n && !vis[xx][yy])
        {
            vis[xx][yy] = 1;
            DFS (xx, yy);
            if (flag) return;
        }
    }
    return;
}

bool bianli (int d)
{
    for (int i=0; i+d<120; i++)
    {///枚举差值
        flag = 0;
        met (vis, 0);
        minx = i;///枚举最大值
        maxn = i+d;///枚举最小值
        DFS (0, 0);
        if (flag) return true;
    }
    return false;
}

void Search (int l, int r)
{
    while (l<=r)
    {
        int mid = (l+r)/2;
        if (bianli(mid)) r = mid-1;
        else l = mid+1;
    }
    printf ("%d\n", l);
    return;
}

int main ()
{
    while (scanf ("%d", &n) != EOF)
    {
        met (g, 0);

        for (int i=0; i<n; i++)
        for (int j=0; j<n; j++)
            scanf ("%d", &g[i][j]);

        Search (0, 120);
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:62494次
    • 积分:3396
    • 等级:
    • 排名:第10263名
    • 原创:277篇
    • 转载:6篇
    • 译文:0篇
    • 评论:17条
    最新评论