关闭

poj 2635 The Embarrassed Cryptographer(同余模运算)

113人阅读 评论(0) 收藏 举报
分类:

http://poj.org/problem?id=2635

题意:给出一个大数K和一个数L,判断是否存在一个小于L的素数能够整除K,存在的话输出最小的那个素数

同余定理:1234%3可以分解为

1%3=1

(1*10+2)%3=0

(0*10+3)%3=0

(0*10+4)%3=1

则1234对3取余得1,大数亦如此,但是本题中需要将这个大数分为多个1000进制的数,10进制的话会TLE

#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <stack>
#include <vector>
#include <map>

using namespace std;

#define N 1000200
#define INF 0xfffffff
#define PI acos (-1.0)
#define EPS 1e-8
#define met(a, b) memset (a, b, sizeof (a))

typedef long long LL;

int isprim[N] = {1, 1}, prim[N], a[N], k = 0;

void Init ()
{
    for (int i=2; i<N; i++)
    {
        if (!isprim[i])
        {
            prim[k++] = i;

            for (int j=i+i; j<N; j+=i)
                isprim[j] = 1;
        }
    }
}

int main ()
{
    char str[N];
    int m;

    Init();

    while (scanf ("%s %d", str, &m), strcmp("0", str) || m)
    {
        met (a, 0);
        int cnt = 0, len = strlen(str);
        int i = len-1;

        while (i>=0)
        {///将字符串中的数以1000进制的形式倒着存入a数组中
            ///1 234 567存为a[567][234][1]
            if (i-2>=0)
            {
                a[cnt] = (str[i-2]-'0')*100+(str[i-1]-'0')*10+str[i]-'0';
                i -= 3;
            }
            else if (i-1>=0)
            {
                a[cnt] = (str[i-1]-'0')*10+str[i]-'0';
                i -= 2;
            }
            else a[cnt] = str[i--]-'0';
            cnt++;
        }

        int flag = 0;

        for (i=0; i<k; i++)
        {
            if (prim[i] >= m) break;

            LL mod = 0;
            for (int j=cnt-1; j>=0; j--)
                mod = (mod * 1000 + a[j]) % prim[i];

            if (!mod)
            {
                printf ("BAD %d\n", prim[i]);
                flag = 1;
                break;
            }
        }
        if (!flag) puts ("GOOD");
    }
    return 0;
}


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:68153次
    • 积分:3446
    • 等级:
    • 排名:第10701名
    • 原创:277篇
    • 转载:6篇
    • 译文:0篇
    • 评论:17条
    最新评论