BZOJ 3566 概率充电器 (树形 概率DP)

3566: [SHOI2014]概率充电器

Time Limit: 40 Sec Memory Limit: 256 MB
Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

Sample Input

3

1 2 50

1 3 50

50 0 0

Sample Output

1.000000

HINT

对于 100%的数据,n≤500000,0≤p,qi≤100。

思路:
树上的期望dp,如果能想到方法的话还是很好做的。
题解链接

#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 500010
using namespace std;

const double eps = 1e-8;

struct Edge{
    int to, nxt;
    double w;
}ed[N << 1];

int n, idc=0;
int head[N];
double f[N], g[N], a[N], h[N], ans=0;

void adde(int u, int v, double w){
    ed[++idc].to = v;
    ed[idc].w = w;
    ed[idc].nxt = head[u];
    head[u] = idc;
}

void dfs1(int u, int fa){
    f[u] = 1 - a[u];
    for(int i=head[u]; i; i=ed[i].nxt){
        int v = ed[i].to;
        if(v == fa) continue ;
        dfs1(v, u);
        h[v] = f[v] + (1-f[v]) * (1-ed[i].w);
        f[u] *= h[v];
    }
}

void dfs2(int u, int fa){
    for(int i=head[u]; i; i=ed[i].nxt){
        int v = ed[i].to;
        if(v == fa) continue;
        double t = h[v] < eps ? 0 : f[u] * g[u] / h[v];
        g[v] += t + (1-t) * (1-ed[i].w);
        dfs2(v, u);  
    }
}

int main(){
    scanf("%d", &n);
    for(int i=1; i<n; i++){
        int u, v; double p; 
        scanf("%d%d%lf", &u, &v, &p);
        adde(u, v, p / 100), adde(v, u, p / 100);
    }
    for(int i=1; i<=n; i++){
        scanf("%lf", &a[i]);
        a[i] /= 100;
    }
    dfs1(1, 1);
    g[1] = 1.0;
    dfs2(1, 1);
    for(int i=1; i<=n; i++)
        ans += 1 - f[i] * g[i];
    printf("%0.6lf\n", ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整 $n$。 接下来 $n$ 行,每行 $n$ 个整,表示棋盘上每个点的字。 输出格式 输出一个整,表示所有满足条件的路径中,所有点的权值和的最小值。 据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值