HDU 4106 Fruit Ninja

原创 2012年03月23日 00:23:14

这个考费用流建图(时间跑到HDU目前的第四)

是poj3680的加强版

poj 3680 是区间对点的限制,而这道题,是点对区间的限制。如果选取取一个数,那么每个包含这个数且长度为 M的连续区间内可以选的数都要减少一个,对吧?转换模型!点变区间,区间变点!把区间离散化为 n - m + 1个部分,那么就有 n - m + 2 个点,left = max(1,i-m+1) ;right = min(i,tot-1)+1;分别是每个点对区间限制的左边界和右边界。

#include<cstdio>
#include<stdlib.h>
#include<cstring>
using namespace std;
const int inf=99999999;
struct{
    int v, cap, cost, next, re;
}edge[10005];
int n,ans;
int k,edgeHead[1050];
int que[10050],pre[1050],dis[1050];
bool vis[1050];
int wei[1050];
int min(int a,int b){
    return a>b?b:a;
}
int max(int a,int b){
    return a>b?a:b;
}
void addEdge(int u,int v,int ca,int co){
    edge[k].v=v;
    edge[k].cap=ca;
    edge[k].cost=co;
    edge[k].next=edgeHead[u];
    edge[k].re=k + 1;               //这个用来记录此边的反边
    edgeHead[u]=k ++;
    edge[k].v=u;
    edge[k].cap=0;
    edge[k].cost=-co;               //故这里去反费用(因为是反向边)
    edge[k].next=edgeHead[v];
    edge[k].re=k - 1;
    edgeHead[v]=k ++;
}

bool spfa(){                //寻找最长增广路时如果是正向边则+相应的费用,反向边-相应的费用
    int i, head = 0, tail = 1;    //  长注释的地方就是从最小费用改到最大费用时需要变动的地方
    for(i = 0; i <= n; i ++){
        dis[i] = inf;////////////
        vis[i] = false;
    }
    dis[0] = 0;
    que[0] = 0;
    vis[0] = true;
    while(head != tail){
        int u = que[head];
        for(i = edgeHead[u]; i != 0; i = edge[i].next){
            int v = edge[i].v;
            if(edge[i].cap && dis[v] >dis[u] + edge[i].cost){////////
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;                        // 这个pre数组记录的是从边号为i的那条边去往v
                if(!vis[v]){
                    vis[v] = true;
                    que[tail ++] = v;
                    if(tail == 10000) tail = 0;             // 这里用到了循环队列,节省空间
                }
            }
        }
        vis[u] = false;
        head++;
        if(head ==10000) head = 0;
    }
    if(dis[n] ==inf) return false;///////////
    return true;
}

void end(){
    int u, p;
    for(u = n; u != 0; u = edge[edge[p].re].v){
        p = pre[u];
        edge[p].cap -= 1;
        edge[edge[p].re].cap += 1;
        ans += edge[p].cost;
    }
}
int main(){
    int i,j,v,lim,m,sum;
    while(scanf("%d %d %d",&v,&m,&lim)!=EOF){
        k=1;
        sum=0;
        memset(edgeHead,0,sizeof(edgeHead));
        for(i=1;i<=v;i++){
            scanf("%d",&wei[i]);
            sum+=wei[i];
        }
        if(m<=lim){
            printf("%d\n",sum);
            continue;
        }                            //不加这个剪枝就TLE
        n=v-m+2;     //在v个点里面一共有v-m+1个长度为m的区间,现在把这v-m+1个数两两之间用点隔开,那么一共用v-m+2个点
        for(i=0;i<n;i++){
            addEdge(i,i+1,lim,0);
        }
        for(i=1;i<=v;i++){
            addEdge(max(1,i-m+1),min(n-1,i)+1,1,-wei[i]);   //如果选v这个点则从max(1,i-m+1)到min(n-1,i)+1的区间内每个点(此点代表的是线段)可选的点数就会减一
        }
        ans=0;
        while(spfa())
            end();
        printf("%d\n",-ans);
    }
    return 0;
}



 也可以这样建图:在每个点的前后个新建一个点,可以把闭区间问题转化为开区间问题

#include<cstdio>
#include<stdlib.h>
#include<cstring>
using namespace std;
const int inf=99999999;
struct{
    int v, cap, cost, next, re;
}edge[10005];
int n,ans;
int k,edgeHead[2050];
int que[10050],pre[2050],dis[2050];
bool vis[2050];
int wei[1050];
int min(int a,int b){
    return a>b?b:a;
}
int max(int a,int b){
    return a>b?a:b;
}
void addEdge(int u,int v,int ca,int co){
    edge[k].v=v;
    edge[k].cap=ca;
    edge[k].cost=co;
    edge[k].next=edgeHead[u];
    edge[k].re=k + 1;               //这个用来记录此边的反边
    edgeHead[u]=k ++;
    edge[k].v=u;
    edge[k].cap=0;
    edge[k].cost=-co;               //故这里去反费用(因为是反向边)
    edge[k].next=edgeHead[v];
    edge[k].re=k - 1;
    edgeHead[v]=k ++;
}

bool spfa(){                //寻找最长增广路时如果是正向边则+相应的费用,反向边-相应的费用
    int i, head = 0, tail = 1;    //  长注释的地方就是从最小费用改到最大费用时需要变动的地方
    for(i = 0; i <= n; i ++){
        dis[i] = inf;////////////
        vis[i] = false;
    }
    dis[0] = 0;
    que[0] = 0;
    vis[0] = true;
    while(head != tail){
        int u = que[head];
        for(i = edgeHead[u]; i != 0; i = edge[i].next){
            int v = edge[i].v;
            if(edge[i].cap && dis[v] >dis[u] + edge[i].cost){////////
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;                        // 这个pre数组记录的是从边号为i的那条边去往v
                if(!vis[v]){
                    vis[v] = true;
                    que[tail ++] = v;
                    if(tail == 10000) tail = 0;             // 这里用到了循环队列,节省空间
                }
            }
        }
        vis[u] = false;
        head++;
        if(head ==10000) head = 0;
    }
    if(dis[n] ==inf) return false;///////////
    return true;
}

void end(){
    int u, p;
    for(u = n; u != 0; u = edge[edge[p].re].v){
        p = pre[u];
        edge[p].cap -= 1;
        edge[edge[p].re].cap += 1;
        ans += edge[p].cost;
    }
}
int main(){
    int i,j,v,lim,m,sum;
    while(scanf("%d %d %d",&v,&m,&lim)!=EOF){
        k=1;
        sum=0;
        memset(edgeHead,0,sizeof(edgeHead));
        for(i=1;i<=v;i++){
            scanf("%d",&wei[i]);
            sum+=wei[i];
        }
        if(m<=lim){
            printf("%d\n",sum);
            continue;
        }                            //不加这个剪枝就TLE
        n=v-m+1;
        for(i=0;i<=2*n+1;i++){
            addEdge(i,i+1,lim,0);
        }
        for(i=1;i<=v;i++){
            addEdge(2*max(1,i-m+1)-1,2*min(n,i)+1,1,-wei[i]);
        }
        ans=0;
        n=2*n+2;
        while(spfa())
            end();
        printf("%d\n",-ans);
    }
    return 0;
}


 

 

HDU 4106 Fruit Ninja 区间k覆盖问题 最小费用流

题目链接:点击打开链接 题意: 给定n长的序列,m ,k 选择一些数使得 选择的数和最大。输出和。 限制:对于任意的区间[i, i+m]中至多有k个数被选。 思路: 白书P367,区间k覆...

hdu 4106 Fruit Ninja

准确的说这道题已经卡了我3个月了,3个月前我还是连spfa都写不好的小菜鸟,3个月前我还在刷水dp,3个月前写个水二分都会出错,3个月前我很无力。。。转眼,经过一个寒假的训练,虽然还是菜鸟,但也算得上...
  • zz_1215
  • zz_1215
  • 2012年02月18日 22:05
  • 1386

HDU 3952 Fruit Ninja(直线与线段相交枚举)

HDU 3952 Fruit Ninja() http://blog.csdn.net/zxy_snow/article/details/6699215 题意:        平面上给你n个凸多...

HDU 4116 Fruit Ninja ( 计算几何 + 扫描线 )

给你最多1000个圆,问画一条直线最多能与几个圆相交,相切也算。 显然临界条件是这条线是某两圆的公切线,最容易想到的就是每两两圆求出所有公切线,暴力判断一下。 可惜圆有1000个,时间复杂...
  • Ezereal
  • Ezereal
  • 2016年09月26日 10:06
  • 310

HDU 4620 Fruit Ninja Extreme(搜索)

题意: N≤30个切水果方案,给定时间Ti,个数numi,以及切的水果,总水果M≤200N\le 30个切水果方案, 给定时间T_i, 个数num_i, 以及切的水果, 总水果M\le200 ...
  • lwt36
  • lwt36
  • 2016年03月01日 02:52
  • 236

HDU 4000 Fruit Ninja && HLG 1625 ikki的数字 (树状数组)

链接:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1625 描述: ikki 最近对数...

hdu4000 Fruit Ninja(树状数组)

题目戳这里题意:对1~n的一个排列,求所有的i

hdu 4000 Fruit Ninja 求数组中 小大中 的个数

Problem Description Recently, dobby is addicted in the Fruit Ninja. As you know, dobby is a free el...

HDU 4000 Fruit Ninja

Problem Description Recently, dobby is addicted in the Fruit Ninja. As you know, dobby is a free el...

hdu 4000 Fruit Ninja 树状数组+统计

/* 比赛的时候没有写出来,赛后请教大牛后写的 可以先求出(xyz,xzy)的总数量 只需出去x后面多少个比它大的个数n,C(n,2)就是了 然后求出xyz的个数, 对于a,求出比a小的个数low[a...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 4106 Fruit Ninja
举报原因:
原因补充:

(最多只允许输入30个字)