浅尝TensorFlow on Kubernetes

原创 2017年09月28日 08:40:30

Author: xidianwangtao@gmail.com

Distributed TensorFlow

2016年4月TensorFlow发布了0.8版本宣布支持分布式计算,这个特性,我们称之为Distributed TensorFlow。

这是非常重要的一个特性,因为在AI的世界里,训练数据的size通常会大到让人瞠目结舌。比如Google Brain实验室今年发表的论文OUTRAGEOUSLY LARGE NEURAL NETWORKS: THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER中提到,下图中MOE Layer Model可以达到680亿个Parameters的规模,如此复杂的模型,如果只能单机训练,那耗时难于接受。通过Distributed TensorFlow,可以利用众多服务器构建TensorFlow Cluster来提高训练效率。

输入图片说明

关于Distributed TensorFlow的更多内容,请参考官方内容www.tensorflow.org/deplopy/distributed,这里给出Distributed TensorFlow结构图:

Why TensorFlow on Kubernetes

Distributed TensorFlow虽然提供了分布式能力,可以利用服务器集群加快训练,但是还有许多缺点,比如资源无法隔离、PS进程遗留问题等等,而这些正是Kubernetes所擅长的地方。下图是总结的你需要将TensorFlow运行在Kubernetes上的理由:

输入图片说明

对于我们来说,前期最大的用户痛点就是算法团队使用的HDFS Read性能不及预期,经过网上查找资料及我们自己简单的对比测试,发现GlusterFS可能是最适合我们的分布式存储了。因此在我们的TensorFlow on Kubernetes项目中使用GlusterFS来存放训练数据,worker将从GlusterFS中读取训练数据进行计算。

关于PS进程遗留问题,TensorFlow社区有很多讨论,但至今没有官方的实现方案,在Kubernetes中,这将比较好解决,在后面的Thinking小节中会单独讨论。

Integrated Architecture

这里写图片描述

说明:

  • 支持Between-Graph和In-Graph两种replication场景;
  • PS Task通过Kubernetes Deployment来部署,Worker Task通过Kubernetes Job来部署,由Kubernetes service和KubeDNS来提供服务发现;
  • 每个TensorFlow Cluster都会通过StorageClass来Dynamic Provision PV,事先会先创建好通过Heketi对接Gluster集群的StorageClass;
  • GlusterFS集群通过Heketi来暴露rest api与Kubernetes进行交互,关于Heketi的部署,请参考官方文档;
  • 每个TensorFlow Cluster会最终创建两个PV,一个用来存放训练数据(挂载到容器内/data,对应TensorFlow –data_dir配置),一个用来存储训练日志(挂载到容器内/log,对应TensorFlow –log_path配置);
  • 每个用户会对应在Kubernetes中创建一个namespace;
  • 会给每个用户部署一个Jupyter Notebook Deployment和Service,Service通过NodePort暴露到集群外;
  • 有一个节点比较特殊,我们称之为User Node,这个节点通过Taint方式,保证会运行Pod,但是会通过kube-proxy来暴露集群内的service,比如上面的Jupyter Notebook service将只允许在这个节点暴露出去;
  • User Node节点存放着用户写的python算法,并可以通过http查看和下载这些算法文件,Between-Graph场景下,容器启动后将通过curl下载这些算法文件;
  • 会给没用用户创建一个Tensorboard Deployment和Service,Serivce通过NodePort暴露到集群外(同样只能在User Node暴露),Tensorboard Pod会挂着log PV,这样就能得到TensorFlow Graph。

Deploy Architecture

输入图片说明

整个系统涉及以下核心Components:

  • TensorFlow: 1.3.0
  • Kubernetes: 1.7.4
  • Docker: 1.12.6
  • Harbor: 1.1.2
  • Contiv netplugin: 0.1-12-23-2016.19-44-42.UTC
  • Keepalived: 1.3.5
  • Haproxy:1.7.8
  • Etcd2: 2.3.7
  • Etcd3: 3.2.1
  • Glusterfs: 3.10.5

网络方案:contiv netplugin + ovs + vlan.
日志方案:fluentd + Kafka + ES + Kibana.
监控方案:cadvisor + prometheus + Grafana.

CaaS的细节不在这里讨论,其实也是大家非常熟悉的方案了。

Demo

大家可以参考Kyle Bai的https://github.com/kairen/workshop413,他这里时候用NFS作为后端存储,需要改成你们自己的存储,大家自己去尝试吧,我这就不一步一步来了,好无聊。

这个Demo,我改成NodePort方式暴露Jupyter Nodebook,登录时输入正确的token即可:

输入图片说明

这是一个In-Graph集群,点击master_client.ipynb,可以看到具体的训练算法内容:

输入图片说明

点击执行,可以在下面看到输出:

输入图片说明

这只是个简单的Demo,实际使用上,自动化生成各个ps, worker, pvc对应的kubernetes yaml,使用域名进行服务发现,不然如果你使用IP的话,可能就需要利用Pod的ProStart Hook来反馈各个Task的IP了,这将比较麻烦。

Thinking

  • Q: PS进程遗留问题,在社区讨论比较多(issue 4173),结合Kubernetes,我们可以比较简单的来做到回收PS进程的目的。
    A:在DevOps的TaaS模块中,针对每个TensorFlow Cluster都启动一个协程,检查计数器是否达到worker数量(worker是job运行的,down了以后,watch到job successed,则计数器加1),如果等于worker数,则表明训练结束,等待30s后,调用kubernetes apiserver接口将ps deployment/service删除,达到自动回收ps的效果;
  • **Q**worker是无状态的,ps是有状态的,而ps是无法进行checkpoint的,如何进行训练save和restore呢?
    A:worker虽然是无状态的,但是tf.train.Saver提供能力在worker上进行checkpoint,大概原理就是逐个从PS task中get Parameters,并进行save持久化。
  • Q怎么让用户指定ps和worker个数等少量参数,自动生成kubernetes yaml?
    A: 因为当前我们还没有针对TaaS做前端Portal,所以目前是通过jinja template来自动生成的(可以参考tensorflow/ecosystem/kubernetes),用户只要指定少量参数即可生成ps和worker需要的kubernetes yaml。
    比如下面是我的一个jinja template tfcluster_template.yaml.jinja,

    {%- set name = "imagenet" -%}
    {%- set worker_replicas = 3 -%}
    {%- set ps_replicas = 2 -%}
    {%- set script = "http://xxx.xx.xx.xxx:80/imagenet/imagenet.py" -%}
    
    {%- set image = "tensorflow/tensorflow:1.3.0" -%}
    {%- set data_dir = "/data" -%}
    {%- set log_dir = "/log" -%}
    {%- set port = 2222 -%}
    {%- set replicas = {"worker": worker_replicas, "ps": ps_replicas} -%}
    
    {%- macro worker_hosts() -%}
      {%- for i in range(worker_replicas) -%}
        {%- if not loop.first -%},{%- endif -%}
        {{ name }}-worker-{{ i }}:{{ port }}
      {%- endfor -%}
    {%- endmacro -%}
    
    {%- macro ps_hosts() -%}
      {%- for i in range(ps_replicas) -%}
        {%- if not loop.first -%},{%- endif -%}
        {{ name }}-ps-{{ i }}:{{ port }}
      {%- endfor -%}
    {%- endmacro -%}
    
    
    {%- for job in ["worker", "ps"] -%}
    {%- for i in range(replicas[job]) -%}
    kind: Service
    apiVersion: v1
    metadata:
      name: {{ name }}-{{ job }}-{{ i }}
    spec:
      selector:
        name: {{ name }}
        job: {{ job }}
        task: "{{ i }}"
      ports:
      - port: {{ port }}
        targetPort: 2222
    
    {% if job == "worker" %}
    ---
    
    kind: Job
    apiVersion: batch/v1
    metadata:
      name: {{ name }}-{{ job }}-{{ i }}
    spec:
      replicas: 1
      template:
        metadata:
          labels:
            name: {{ name }}
            job: {{ job }}
            task: "{{ i }}"
        spec:
          containers:
          - name: {{ name }}-{{ job }}-{{ i }}
            image: {{ image }}
            ports:
            - containerPort: 2222
            command: ["/bin/sh", "-c"]
            args:["
                curl {{ script }} -o /opt/{{ name }}.py;
                python /opt/{{ name }}.py \
                       --ps_hosts={{ ps_hosts() }} \
                       --worker_hosts={{ worker_hosts() }} \
                       --job_name={{ job }} \
                       --task_index={{ i }} \
                       --log_path={{ log_dir }} \
                       --data_dir={{ data_dir }} ;"]
            volumeMounts: 
            - name: data
              mountPath: {{ data_dir }}
            - name: log
              mountPath: {{ log_dir }}
          restartPolicy: Never
          volumes:
            - name: data
              persistentVolumeClaim:
                claimName: {{ name }}-data-pvc
            - name: log
              persistentVolumeClaim:
                claimName: {{ name }}-log-pvc 
    {% endif %}
    
    {% if job == "ps" %}
    ---
    
    kind: Deployment
    apiVersion: extensions/v1beta1
    metadata:
      name: {{ name }}-{{ job }}-{{ i }}
    spec:
      replicas: 1
      template:
        metadata:
          labels:
            name: {{ name }}
            job: {{ job }}
            task: "{{ i }}"
        spec:
          containers:
          - name: {{ name }}-{{ job }}-{{ i }}
            image: {{ image }}
            ports:
            - containerPort: 2222
            command: ["/bin/sh", "-c"]
            args:["
                curl {{ script }} -o /opt/{{ name }}.py;
                python /opt/{{ name }}.py \
                       --ps_hosts={{ ps_hosts() }} \
                       --worker_hosts={{ worker_hosts() }} \
                       --job_name={{ job }} \
                       --task_index={{ i }} \
                       --log_path={{ log_dir }} ;"]
            volumeMounts: 
            - name: log
              mountPath: {{ log_dir }}
          restartPolicy: Never
          volumes:
            - name: log
              persistentVolumeClaim:
                claimName: {{ name }}-log-pvc
    
    {% endif %}
    ---
    
    {% endfor %}
    {%- endfor -%}
    
    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:
     name: {{ name }}-log-pvc
     annotations:
       volume.beta.kubernetes.io/storage-class: glusterfs
    spec:
     accessModes:
      - ReadWriteMany
     resources:
       requests:
    
         storage: 10Gi
    ---
    
    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:
     name: {{ name }}-data-pvc
     annotations:
       volume.beta.kubernetes.io/storage-class: glusterfs
    spec:
     accessModes:
      - ReadWriteMany
     resources:
       requests:
    
         storage: 10Gi
    ---
    

    然后执行python render_template.py tfcluster_template.yaml.jinja | kubectl apply -f -完成对应的Between-Graph TensorFlow Cluster的创建和启动。

Summary

TensorFlow和Kubernetes分别作为深度学习和容器编排领域的王者,两者的合理整合可以将释放Distributed TensorFlow的能力,本文只是我对TensorFlow on Kubernetes的浅尝,未来还有很多工作需要做,比如给某些算法定制特殊的调度策略、网络IO性能调优、在DevOps上开发TaaS,提升易用性、TensorFlow Serving的快速部署等等,欢迎对这方面有浓厚兴趣的同学加我微信xidianwangtao交流。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Java 窗体对象浅尝

  • 2009年09月28日 09:46
  • 72KB
  • 下载

浅尝Unity 3D的Asset Bundle知识(六)-----缓存利用进阶篇

经过了缓存利用相关的理解,小生对于Unity的Asset Bundle的研究也将更加深入。今天就让我们进入关于缓存使用...

高焕堂视频学习笔记:浅尝架构师的滋味

说明: 2015年的时候看了一段时间的高焕堂从Android程序员到架构师视频,总共接近234集的内容,15年大概看了60集左右,后来因为其他的事情,这个事就暂停了,最近找出笔记,发现需要整理...
  • a910626
  • a910626
  • 2016年12月01日 15:40
  • 394

浅尝Solr~~

由于最近项目组有需求,大致意思是做一个对数据全面的统一搜索。于是乎,就研究了一哈Solr什么是Solr?Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用...

浅尝数据库并发控制

数据库是一个共享资源,可以供多个用户使用。然而,对于大多数程序员来说,单处理机系统是我们接触最多的系统,运行在其上的数据库事务也并非真正意义上的并行,实际上它是这些并行事务的并行操作轮流交叉运行,这种...

Selenium3 浅尝

1.下载网址:http://www.seleniumhq.org/download/ 根据自己的语言,下载正确的版本,由于本人是java出身,python还只是入门级别,所以不班门弄斧,下面的所有di...

浅尝KMP算法

转自:http://blog.163.com/kazenoyume@126/blog/static/166753923201462783123487/ 最近在工作之余,参加了hihocode...
  • ltx06
  • ltx06
  • 2015年11月05日 19:10
  • 297

浅尝Python 的GUI

【背景介绍】 编写python接口测试脚本后,希望该脚本提供给他人使用时,能够简单易用,便想创建一个界面,在界面上选择测试地址和测试用例进行接口调用。设计出的最终界面如下,界面较简陋~处女作,勿喷~...

不能实例化抽象类的浅尝

今天写代码,想实现个功能,写成一个界面类,做成了CView的子类,编译无法通过,说是不能实例化抽象类,由于CView::OnDraw是抽象的。这个问题我是第一次遇到,于是网上搜了一下都不能得到满意的答...

机器学习初识之Kmeans浅尝

机器学习在图像识别方面具有很好的效果,今天在网易云课堂黑板可老师视频中学习了一下Kmeans算法,是一种非监督类学习算法,具体步骤如下   1,选取K个点作为初始中心 2,将每个点最近的中心,形...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:浅尝TensorFlow on Kubernetes
举报原因:
原因补充:

(最多只允许输入30个字)