Kibana User Guide [4.2] » Getting Started with Kibana » Data Visualization: Beyond Discovery

翻译 2015年11月19日 09:51:24

Data Visualization: Beyond Discovery

数据可视化:Discovery之外的内容

The visualization tools available on the Visualize tab enable you to display aspects of your data sets in several different ways.

Click on the Visualize tab to start:

在’Visualize‘栏,你可以得到可视化工具,让你能够以不同的方式展现数据。

点击'Visualize'开始操作吧:


Click on Pie chart, then From a new search. Select the ba* index pattern.

点击’Pie chart‘,然后是’From a new search‘,选择’ba*‘索引模式。

Visualizations depend on Elasticsearch aggregations in two different types: bucket aggregations andmetric aggregations. A bucket aggregation sorts your data according to criteria you specify. For example, in our accounts data set, we can establish a range of account balances, then display what proportions of the total fall into which range of balances.

虚拟化依赖于ES的两种聚集模式:桶聚集和规聚集。一个桶聚集根据你确定的标准对你的数据进行排序。例如,在我们的统计数据集中,我们可以建立一些列账户金额,然后展示占总数的比率,确定金额的范围。

The whole pie displays, since we haven’t specified any buckets yet.

完全的饼状图,因为我们还没有定义任何buckets。


Select Split Slices from the Select buckets type list, then select Range from the Aggregation drop-down selector. Select the balance field from the Field drop-down, then click on Add Range four times to bring the total number of ranges to six. Enter the following ranges:

从’Select buckets type‘列表中选择’Split Slices‘,然后从’Aggregation‘下拉列表中选择’Range‘。从’Field‘下拉列表中选择’balance‘,然后,点击’Add Range‘四次,把范围数变成6。属兔下面的范围:

0             999
1000         2999
3000         6999
7000        14999
15000       30999
31000       50000

Click the green Apply changes button images/apply-changes-button.png to display the chart:

点击绿色的’Apply changes‘应用图表:


This shows you what proportion of the 1000 accounts fall in these balance ranges. To see another dimension of the data, we’re going to add another bucket aggregation. We can break down each of the balance ranges further by the account holder’s age.

这个图展现了1000个账户收入的分布情况。我们要增加另一个bucket集成。我们可以从账户持有人的名字来查看分布情况。

Click Add sub-buckets at the bottom, then select Split Slices. Choose the Terms aggregation and the agefield from the drop-downs. Click the green Apply changes button images/apply-changes-button.png to add an external ring with the new results.

点击底部的’Add sub-buckets‘,然后选择’Split Slices‘。从下拉菜单选择’Terms‘聚集和’age‘字段。点击按钮’Apply changes‘应用新选择的内容。


Save this chart by clicking the Save Visualization button to the right of the search field. Name the visualization Pie Example.

Next, we’re going to make a bar chart. Click on New Visualization, then Vertical bar chart. Select From a new search and the shakes* index pattern. You’ll see a single big bar, since we haven’t defined any buckets yet:

点击’Save Visualization‘按钮保存这个图表到搜索域的右边。给这个可视化视图命名为’Pie Example‘。


然后,我们将要去做一个柱状图。点击’New Visualization‘,谈话点击’Vertical bar chart‘。选择’From a new search‘和’shakes*‘索引模式。你将看到一个大柱,因为我们还没用定义任何’bucksts‘:


For the Y-axis metrics aggregation, select Unique Count, with speaker as the field. For Shakespeare plays, it might be useful to know which plays have the lowest number of distinct speaking parts, if your theater company is short on actors. For the X-Axis buckets, select the Terms aggregation with the play_name field. For the Order, select Ascending, leaving the Size at 5.

Leave the other elements at their default values and click the green Apply changes button images/apply-changes-button.png. Your chart should now look like this:

对于Y轴的生成方式,选择’Unique Cont‘,’speaker‘作为字段。对于莎士比亚剧集,知道哪部剧有最少的语言部分很有作用,如果戏剧公司缺演员的话。对于X周,选择’Terms‘聚集和’play_name’字段。对于‘Order’,选择‘Ascending’,定‘Size’为5。

把其他语速设定为缺省值,点击‘Apply changes’按钮,你可以看到这些:


Notice how the individual play names show up as whole phrases, instead of being broken down into individual words. This is the result of the mapping we did at the beginning of the tutorial, when we marked the play_name field as not analyzed.

注意单个剧目的名字是以整个短语的形式展现的,而不是被分割成单个单词。这是我们在教程开始时做的映射的结果,当时‘play_name’还没有被分析。

Hovering on each bar shows you the number of speaking parts for each play as a tooltip. You can turn this behavior off, as well as change many other options for your visualizations, by clicking the Options tab in the top left.

每个柱图上都有每部剧的语言部分,这是个提示工具,你可以选择关闭,也可以点击左上方的‘Options’改变你可视化结果的选项。

Now that you have a list of the smallest casts for Shakespeare plays, you might also be curious to see which of these plays makes the greatest demands on an individual actor by showing the maximum number of speeches for a given part. Add a Y-axis aggregation with the Add metrics button, then choose the Max aggregation for the speech_number field. In the Options tab, change the Bar Mode drop-down togrouped, then click the green Apply changes button images/apply-changes-button.png. Your chart should now look like this:

既然你已经知道莎士比亚戏剧中哪个的语言部分最少,那么,你应该也好奇哪个演员表演的时间最长,对那部戏的贡献最大。使用‘Add metrics’按钮,为‘speech_number’字段选择‘Max’集成添,来显示一个Y轴的展示效果。在‘Options’标签,把‘Bar Mode’改成‘grouped’,然后点击应用按钮,你可以看到下面的效果:


As you can see, Love’s Labours Lost has an unusually high maximum speech number, compared to the other plays, and might therefore make more demands on an actor’s memory.

正如你看到的,《爱的徒劳》比其它戏剧的对话都要高,所以,对演员的记忆力要求会更高。

Save this chart with the name Bar Example.

把这张表保存,名字为‘Bar Example’。

Next, we’re going to make a tile map chart to visualize some geographic data. Click on New Visualization, then Tile map. Select From a new search and the logstash-* index pattern. Define the time window for the events we’re exploring by clicking the time selector at the top right of the Kibana interface. Click onAbsolute, then set the start time to May 18, 2015 and the end time for the range to May 20, 2015:

然后,我们将看一些地理数据。点击‘New Visualization’,然后点击‘Tile map’。选择‘From a new search’和‘logstash_*'索引模式。通过点击Kibana顶部界面右边的时间选择,为我们正在检索的时间定义时间窗口。点击’Absolute‘,然后设置起始时间是2015年5月18日,结束时间是2015年5月20日。


Once you’ve got the time range set up, click the Go button, then close the time picker by clicking the small up arrow at the bottom. You’ll see a map of the world, since we haven’t defined any buckets yet:

你把时间设置好后,点击’Go‘按钮,然后关闭时间选择器,通过页面下面那个向上的符号。然后,你将会看到世界的地图,此时我们还没有定义任何buckets。


Select Geo Coordinates as the bucket, then click the green Apply changes button images/apply-changes-button.png. Your chart should now look like this:

选择’Geo Coorddinates‘作为bucket,然后点击应用按钮,你可以看到下面的内容:


You can navigate the map by clicking and dragging, zoom with the images/viz-zoom.png buttons, or hit the Fit Data Bounds images/viz-fit-bounds.png button to zoom to the lowest level that includes all the points. You can also create a filter to define a rectangle on the map, either to include or exclude, by clicking the Latitude/Longitude Filter images/viz-lat-long-filter.png button and drawing a bounding box on the map. A green oval with the filter definition displays right under the query box:

通过点击、拖拽、用images/viz-zoom.png按钮,你可以在地图上遨游,也可以点击’Fit Data Bounds‘按钮来到最低层面,查看地图上的所有点。你可以在地图上创建一个过滤器来定义柱形,过滤器起包含或排除作用,点击’Latitude/Longitude Filter‘按钮,可以在地图上绘制一个向上的盒子。一个包含过滤器规定的绿色椭圆形在请求栏的右边。


Hover on the filter to display the controls to toggle, pin, invert, or delete the filter. Save this chart with the name Map Example.

在filter上,你可以对它进行切换,固定,插入,或删除。用’Map Example‘名字保存这个表。

Finally, we’re going to define a sample Markdown widget to display on our dashboard. Click on New Visualization, then Markdown widget, to display a very simple Markdown entry field:

最后,我们将在仪表盘上定义一个减价装饰品样例。点击’New Visualization‘,然后点击’Markdown widget‘,来展示一个简单的减价进入域。


Write the following text in the field:

在field中写入下面的内容:

# This is a tutorial dashboard!
The Markdown widget uses **markdown** syntax.
> Blockquotes in Markdown use the > character.

Click the green Apply changes button images/apply-changes-button.png to display the rendered Markdown in the preview pane:

应用,效果如下:


Save this visualization with the name Markdown Example.

保存。


备注:

材料来自elastic官网。

地址:

https://www.elastic.co/guide/en/kibana/current/tutorial-visualizing.html

举报

相关文章推荐

kibana visualize添加自定义查询

kibana visualize添加自定义查询

Kibana 10 分钟入门

10 minute walk through Kibana
  • gniMiL
  • gniMiL
  • 2014-06-09 16:46
  • 2179

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

Data Visualization

Data Visualization                   -Scalar Visualizat...

Data visualization

the explain of data visualization

Scalar Visualization

Data Visualization                   -Scalar VisualizationDa...

Kibana User Guide [4.2] » Visualize » Data Table

Data Table 数据表 Count 计数 The count aggregation returns a raw count of the elements in the selec...

Kibana User Guide [4.2] » Getting Started with Kibana » Data Visualization: Beyond Discovery

Data Visualization: Beyond Discovery 数据可视化:Discovery之外的内容 The visualization tools available on th...

Kibana User Guide [4.2] » Getting Started with Kibana

Getting Started with Kibana 开始使用Kibana Now that you have Kibana installed, you can step through ...

Kibana User Guide [4.2] » Getting Started with Kibana » Putting it all Together with Dashboards

Putting it all Together with Dashboards 使用仪表盘整合在一起 A Kibana dashboard is a collection of v...

Kibana User Guide [4.2] » Getting Started with Kibana » Defining Your Index Patterns

Each set of data loaded to Elasticsearch has an index pattern. In the previous section, the Shakesp...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)