关闭

二叉树的深度

标签: 二叉树
341人阅读 评论(0) 收藏 举报
分类:



int TreeDepth(BinaryTreeNode* pRoot)
{
if (pRoot == NULL)
return 0;
int nLeft = TreeDepth(pRoot->m_pLeft);
int nRight = TreeDepth(pRoot->m_pRight);
return (nLeft > nRight) ? (nLeft + 1) : (nRight + 1);
}


惊恐解法一:


bool IsBalanced(BinaryTreeNode* pRoot)
{
if (pRoot == NULL)
return true;
int left = TreeDepth(pRoot->m_pLeft);
int right = TreeDepth(pRoot->m_pRight);
int diff = left - right;
if (diff > 1 || diff < -1)
return false;
return IsBalanced(pRoot->m_pLeft) && IsBalanced(pRoot->m_pRight);
}


惊恐解法二:


一边遍历一边判断每个结点是不是平衡的。

bool IsBalanced(BinaryTreeNode* pRoot, int* pDepth)
{
if (pRoot == NULL)
{
*pDepth = 0;
return true;
}
int left, right;
if (IsBalanced(pRoot->m_pLeft, &left) && IsBalanced(pRoot->m_pRight, &right))
{
int diff = left - right;
if (diff <= 1 && diff >= -1)
{
*pDepth = 1 + (left > right ? left : right);
return true;
}
}
return false;
}

我们只需要给上面的函数传入二叉树的根节点及一个表示结点深度的整型变量即可:

bool IsBalanced(BinaryTreeNode* pRoot)
{
int depth = 0;
return IsBalanced(pRoot, &depth);
}






0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:156109次
    • 积分:6149
    • 等级:
    • 排名:第4029名
    • 原创:479篇
    • 转载:2篇
    • 译文:1篇
    • 评论:3条
    最新评论