最近关心的技术

原创 2006年06月13日 17:24:00
        最近这段时间,公司的新项目还没开始,所以自己学些东西。因为以前没有接触过.NET,而且公司别的项目正在
用这个技术,所以看了看VB.NET。感觉MS的东西还是很有水准的,确实不错,不论是想法还是开发环境。.NET反
映了MS的野心,而好用的产品能够引来开发人员的亲睐。好的想法真是很重要。
        别人都在说Java和.NET之间的竞争,看来考虑到以后的发展,Java还是不能丢啊。
        数据库方面,以前没用过Oracle,这不能不说是个遗憾,所以最近也在补这方面的知识。老婆来日本给我带了
两本Oracle的书,得好好看看。
        在Web应用方面,我觉得还是很有发展前途的,网络应用因该是将来IT领域的发展方向。上周试用了一下
Google的在线Excel,感觉虽然功能不是很完善,但只是刚刚开始,我想信凭Google的实力,肯定会越做越好。
说到Web应用,就不能不想到Ajax,呵呵,良好的用户体验的确很重要。
        Asp.NET和PHP,各有特点,以前只用过PHP,公司的下一个项目就是Asp.NET的,所以也要准备一下。

Spring的核心技术(一)

这部分参考文档涵盖了Spring框架中的所有关键技术,其中最重要的是Spring框架的控制反转容器(IoC),然后是与IoC容器紧密结合的Spring的面向切面(AOP)的编程技术。Spring框架有...
  • FireOfStar
  • FireOfStar
  • 2015年11月16日 08:59
  • 2218

JavaEE的核心技术简介

一. JavaEE的架构 二. JavaEE的核心技术简介 三. JavaEE平台中的角色 四. 当前流行的JavaEE平台 五.  JavaEE的应用   一.JavaEE架构: ...
  • youzhouliu
  • youzhouliu
  • 2016年07月04日 15:27
  • 3493

【干货】2017这些技术——你都了解过吗

### 插件化 #### 热更新对Android平台,我们通常所说的在线热更新就是,例如对已经发布在应用市场上的宿主APK,当我们从crash统计平台上发现某个函数调用有bug,导致经常性cras...
  • androidstarjack
  • androidstarjack
  • 2017年05月22日 23:37
  • 4327

腾讯最近几年关于技术类的招聘题

  • 2014年07月09日 13:07
  • 11.53MB
  • 下载

最近两周我们接触到的两种线上抓娃娃机的技术实现方案(一种RTSP/一种RTMP)

线上抓娃娃机需求最近线上抓娃娃机的项目火爆了,陆陆续续几十款线上抓娃娃机上架,还有一大波正在开发上线中,各大视频云提供商都在蹭热度发布自己的线上抓娃娃机方案,综合了一下,目前线上抓娃娃机的视频需求无非...
  • xiejiashu
  • xiejiashu
  • 2017年11月19日 22:19
  • 728

使用cookie技术实现,缓存最近浏览过详细信息的三本书的书名列表,并进行相应显示

(1)显示书名列表,及最近阅读的最多三本书的书名 public class ShowGoods extends HttpServlet { /** * */ private st...
  • u011991249
  • u011991249
  • 2017年08月01日 14:54
  • 211

最近在给同事们分享一些JAVA Web方向的技术,全程录屏,分享给有需要的朋友们,不喜勿喷!

最近在给同事们分享一些JAVA Web方向的技术,全程录屏,分享给有需要的朋友们,不喜勿喷!...
  • peng_wu01
  • peng_wu01
  • 2013年08月18日 12:13
  • 2000

最近一段时间要做的事情就是它了——Java服务器端的相关技术

原文链接 http://www.jianshu.com/p/814d05ddb54a 应届毕业生如何成为一名服务器端开发工程师(一) 字数1298 阅读1860 评论1...
  • yuhushangwei
  • yuhushangwei
  • 2016年10月20日 23:58
  • 1470

关于最近的私活--技术篇

最近两周在做的这个项目的需求是这样的。客户从某些地方爬取了一些商品数据,存在txt里面(可以认为一行数据是一个item),要导入到指定模板格式的Excel中,简单说txt的一行数据就是excel的一行...
  • linpingta
  • linpingta
  • 2014年01月18日 15:44
  • 851

《实时碰撞检测算法技术》读书笔记(五):最近点计算(上)

点到面的最近距离 一点P以及法线n定义了一个平面π,所有该平面上的点X都满足方程n·(X - P) = 0(即从点P指向X的向量垂直于n)。现令Q为空间内任意一点,则面内距Q的最近点R为点QQ在该面上...
  • u010387196
  • u010387196
  • 2014年03月04日 23:09
  • 1075
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最近关心的技术
举报原因:
原因补充:

(最多只允许输入30个字)