pandas groupby重写Q3

原创 2015年07月09日 22:17:34

-- coding: utf-8 --

“””
Created on Thu Jul 09 20:31:38 2015

@author: Administrator
“”“

import pandas as pd
import numpy as np
import os

InputDir = r’D:\R\P’

rootdir = InputDir

pieces = []

for parent,dirnames,filenames in os.walk(rootdir):

 for filename in filenames:

    dayhourmin = filename.split('_')[4]
    day = dayhourmin[4:8]
    hour = dayhourmin[8:10]
    minute = dayhourmin[10:12]

    df=pd.read_csv(os.path.join(parent,filename),skiprows=3,header=None,nrows=8,sep=' ').iloc[:,2]
    #取第三列速度
    frame=df.T
    frame['day'] = day
    frame['hour'] = hour
    frame['minute'] = minute
    pieces.append(frame)
    wholeItem = pd.concat(pieces,axis = 1,ignore_index=True).replace('/////',np.nan).T.astype(np.float)
    print wholeItem.dtypes
    #注意元素类型

aver = wholeItem.groupby([‘day’,’hour’]).mean().add_prefix(‘mean_’)
all = pd.merge(wholeItem,aver,left_on=[‘day’,’hour’],right_index=True)

`

pandas groupby (TimeGrouper)重写Q3

import os import pandas as pd import datetimeroot = 'D:/select_files'all_sudu = pd.DataFrame() all_t...
  • wangquannuaa
  • wangquannuaa
  • 2015年08月01日 21:44
  • 1034

pandas groupby 详解

Pandas groupby 函数 使用方法 详解 双索引分组 遍历分组 聚合
  • u011462357
  • u011462357
  • 2017年10月28日 17:09
  • 614

Pandas GroupBy对象 索引与迭代

import pandas as pd df = pd.DataFrame({'性别' : ['男', '女', '男', '女', '男'...
  • claroja
  • claroja
  • 2017年06月08日 11:42
  • 983

pandas重写Q3

## -*- coding: utf-8 -*- import numpy as np import pandas as pd from numpy.matlib import repmatfile...
  • wangquannuaa
  • wangquannuaa
  • 2015年07月05日 17:31
  • 433

Pandas+groupby用法讲解

import pandas as pd import numpy as np#导入数据 type_specified={"trip_id":"object","bikeid":"object","fr...
  • zhangxiaojiakele
  • zhangxiaojiakele
  • 2017年10月10日 22:41
  • 1200

python/pandas数据挖掘(十四)-groupby,聚合,分组级运算

groupby,聚合,分组级运算,python 数据分析
  • youngbit007
  • youngbit007
  • 2017年01月09日 14:23
  • 35684

pandas中Groupby使用(二)-对分组进行迭代

#-*- coding:utf-8 -*- import pandas as pd import numpy as np df=pd.DataFrame({'key1':['a','a','b','b...
  • qq_36076233
  • qq_36076233
  • 2017年09月03日 12:33
  • 165

pandas聚合和分组运算之groupby

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分...
  • Leonis_v
  • Leonis_v
  • 2016年07月05日 16:55
  • 58222

Pandas groupby apply agg 区别 运行自定义函数

agg 方法将一个函数使用在一个数列上,然后返回一个标量的值。也就是说agg每次传入的是一列数据,对其聚合后返回标量。 对一列使用三个函数: 对不同列使用不同函数 apply 是一个更一...
  • qq_16234613
  • qq_16234613
  • 2017年10月15日 23:09
  • 846

理解pandas的groupby().apply()

如何理解《利用Python进行数据分析》第2章1880-2010年间全美婴儿姓名例子中的names.groupby(['year', 'sex']).apply(add_prop)...
  • spiral1221
  • spiral1221
  • 2017年07月26日 16:13
  • 1091
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:pandas groupby重写Q3
举报原因:
原因补充:

(最多只允许输入30个字)