关闭

[NOIP2002]均分纸牌题解

标签: C++编程贪心算法
906人阅读 评论(0) 收藏 举报
分类:
题目描述
  有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
  移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
  现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
  例如 N=4,4 堆纸牌数分别为:
  ① 9 ② 8 ③ 17 ④ 6
  移动3次可达到目的:
  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入格式
N(N 堆纸牌,1 <= N <= 100)
A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出格式
所有堆均达到相等时的最少移动次数。
样例输入 :
4
9 8 17 6
样例输出 :
3

题目分析:
要使每一堆的纸牌数目均相同,那么就要将多的移动到少的上面。那么怎么移动才能使步骤最少呢?这个地方就用到了贪心的思路,从最左端开始进行移动,如果第i堆的数目大于平均数,那么移动数加1,将多出来的移动到下一堆。如果第i堆数目小于平均数,那么移动数加1,用下一堆补充缺少的数目。下一堆可以为负数,这是这题的关键。本题中我们只是改变了移动的次序,而移动的总步数不会发生改变。贪心算法就是用最简单的方式让每一堆去达到它应该达到的值,不要去考虑其他因素,这就是本题的解法,也是贪心算法的精髓!就像在看这题讨论的时候的一句话,贪心要大胆!

AC代码:
#include<iostream>
using namespace std;


int N;
int data[101];
int total=0;
int ave;
int cnt=0;


void div()
{
for(int i=1;i<=N;++i)
{
if(data[i]<ave)
{
int need=ave-data[i]; //计算需求量
cnt++;
data[i+1]=data[i+1]-need; //从下一堆获取需求量
}
if(data[i]>ave)
{
int rich=data[i]-ave; //计算剩余量
cnt++;
data[i+1]=data[i+1]+rich; //将剩余量给到下一堆 
}  
}



int main()
{
cin>>N;
for(int i=1;i<=N;++i)
{
cin>>data[i];
total+=data[i];
}
ave=total/N; //均值
div();
cout<<cnt<<endl; 
return 0;

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:10691次
    • 积分:416
    • 等级:
    • 排名:千里之外
    • 原创:31篇
    • 转载:0篇
    • 译文:0篇
    • 评论:6条
    文章分类
    最新评论