机器学习之朴素贝叶斯分类

朴素贝叶斯分类所有贝叶斯分类都是基于贝叶斯定理,朴素贝叶斯分类是贝叶斯分类中运用广泛简单的一种,另外,它还基于特征条件独立假设。贝叶斯定理贝叶斯定理是计算条件概率的公式,条件概率即是事件B发生的前提下事件A发生的概率,记作$P(A|B)$,叫做事件B发生的情况下A的条件概率。公式为:$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$公式大致推导: 如图,有$P(A|B) = \f...
阅读(1697) 评论(0)

机器学习之梯度下降法

方向导数如图,对于函数f(x,y),函数的增量与pp’两点距离之比在p’沿l趋于p时,则为函数在点p沿l方向的方向导数。记为$\frac{\partial f}{\partial l} = \lim_{\rho \rightarrow 0} \frac{f(x+\Delta x,y+\Delta y)-f(x,y)}{\rho } $,其中$\rho=\sqrt{(\Delta x)^{2} + (...
阅读(923) 评论(0)

k-means聚类算法

聚类聚类主要内容是将样本进行归类,同种类别的样本放到一起,所有样本最终会形成K个簇,它属于无监督学习。核心思想根据给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数。数学上可以证明k-means是收敛的。 伪代码随机选择k个质...
阅读(2053) 评论(0)

线性回归之最小二乘法

线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。最小二乘法线性回归过程主要解决的就是如何通过样本来获取最佳的拟合线。最常用的方法便是最小二乘法,它是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。代数推导: 假设拟合直线为y=ax+by=ax+b 对任意样本点(xi,yi)(x_i,y_i) 误差为e=yi−(axi+b)e=y_i-(ax_i+...
阅读(934) 评论(0)
    打赏作者

    赞作者(*^__^*)



    如果您觉得作者写的文章有帮助到您,您可以打赏作者一瓶汽水(*^__^*)

    作者

    笔名:seaboat 汪洋之舟

    github:https://github.com/sea-boat

    微信:



    公众号:

    个人资料
    • 访问:866609次
    • 积分:12009
    • 等级:
    • 排名:第1314名
    • 原创:284篇
    • 转载:5篇
    • 译文:1篇
    • 评论:316条
    博客专栏