强化学习

前言机器学习可以大致分为四类: 监督学习 无监督学习 半监督学习 强化学习 监督学习是利用标记了的样本进行学习,无监督学习则是使用未标记的样本进行学习,这两个是我们最常见的。半监督学习则是样本中只有少量带标记的样本,多数样本都未标记,利用这些样本进行学习。强化学习则是很不同的一种学习方式,它没有规则的训练样本和标签,主要通过奖励和惩罚达到学习的目的。什么是强化学习《最强大脑》曾经有个挑战项目叫蜂巢迷...
阅读(303) 评论(0)

隐马尔可夫模型的Viterbi解码算法

前言前面在做自然语言处理时涉及到一些词性标注的工作,一般会使用隐马尔科夫模型(HMM)来实现词性标注,而HMM模型的解码实现算法一般就会使用Viterbi算法。关于穷举法HMM模型有多种应用,这里说的是其中一个常见应用,即根据观察序列找到最可能的隐含状态序列。最朴素的想法就是直接穷举所有可能的隐含状态序列,并计算出每个组合成的状态序列的概率,概率最大的那个组合序列即是最可能的隐含状态序列。举个水藻和...
阅读(626) 评论(0)

TensorFlow构建循环神经网络

前言前面在《循环神经网络》文章中已经介绍了深度学习的循环神经网络模型及其原理,接下去这篇文章将尝试使用TensorFlow来实现一个循环神经网络,该例子能通过训练给定的语料生成模型并实现对字符的预测。这里选择使用最原始的循环神经网络RNN模型。语料库的准备这里就简单用纪伯伦的《On Friendship》作为语料吧。RNN简要说明用下面两张图简要说明下,RNN模型有多个时刻的输入,从第一个图中看到输...
阅读(653) 评论(0)

循环神经网络

RNN是什么循环神经网络即recurrent neural network,它的提出主要是为了处理序列数据,序列数据是什么?就是前面的输入和后面的输入是有关联的,比如一句话,前后的词都是有关系的,“我肚子饿了,准备去xx”,根据前面的输入判断“xx”很大可能就是“吃饭”。这个就是序列数据。循环神经网络有很多变种,比如LSTM、GRU等,这里搞清楚基础的循环神经网络的思想,对于理解其他变种就比较容易了...
阅读(1108) 评论(0)

卷积神经网络

什么是卷积首先看卷积公式y(t)=f(t)∗g(t)=∫∞−∞f(u)g(t−u)duy(t)=f(t)*g(t)=\int_{-\infty} ^{\infty} f(u)g(t-u)du它是通过两个函数 f(t) 和 g(t) 来生成第三个函数的一种数学算子。从负无穷到正无穷遍历全部 u 值,把 g(t-u) 的值乘以 f(u) 的值之后再进行累加,得到关于该累加操作的关于 t 的函数。从另一...
阅读(786) 评论(0)

softmax的多分类

关于多分类我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——softmax。关于softmaxsoftmax的函数为P(i)=exp(θTix)∑Kk=1exp(θTkx)P(i)=\dfrac{exp(\theta_i^Tx)}{\sum_{k=...
阅读(1376) 评论(0)

神经网络的交叉熵损失函数

常见损失函数 0-1损失函数 L(Y,f(X))={1,0Y != f(X)Y = f(X)L(Y,f(X))=\begin{cases}1,& \text{Y != f(X)}\\0& \text{Y = f(X)}\end{cases} 平方损失函数 L(Y,f(X))=(Y−f(X))2L(Y,f(X))=(Y-f(X))^{2} 绝对损失函数L(Y,f(X))=|(Y−f(X))|L(Y...
阅读(1075) 评论(0)

kmeans实现文本聚类

需求拿到的需求是输入n个文本,对文本进行聚类,由于这些输入不能通过历史数据进行训练,所以这个主要就是用无监督学习来解决。kmeans谈到聚类就会想到kmeans,它的核心思想是给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数。...
阅读(932) 评论(0)

[置顶] 开源一个文本分析项目

Githubhttps://github.com/sea-boat/TextAnalyzerTextAnalyzera text analizer that can analyze text. so far, it can extract hot words in a text segment by using tf-idf algorithm,at the same time using a sc...
阅读(1114) 评论(0)

如何用机器学习对文本分类

需求使用监督学习对历史数据训练生成模型,用于预测文本的类别。样本清洗主要将重复的数据删除掉,将错误无效的数据纠正或删除,并检查数据的一致性等。比如我认为长度小于少于13的数据是无效的遂将之删掉。def writeFile(text): file_object = open('result.txt','w') file_object.write(text) file_object.c...
阅读(650) 评论(0)

机器学习之神经网络

多层神经网络前面说到的感知器是一种最基础的神经网络,他只有输入层和输出层,感知器只能处理线性可分问题,而对于非线性问题就需要多层神经网络。一般如下图所示,有多个层,比如左边的包含输入层、隐层和输出层,而右边的则包含了两个隐层。每层的神经元与下一神经元全互连,同层之间的神经元不会相连,输入层用于接收输入,经过隐层加工后再到输出层加工并输出。如何训练多层网络对于多层网络我们常用误差逆传播算法来训练,而我...
阅读(932) 评论(0)

机器学习之感知器

感知器在讲神经网络前先说说感知器,感知器是一种二分类的线性分类模型,输出值取-1或1。感知器是最基础的神经网络,理解好感知器对后面的各种神经网络模型是很有帮助的。如下图, 它可以有多个输入$(x_1,x_2,...x_n)$,每个输入对应有一个权重$(w_1,w_2...w_n)$,除此之外还有一个偏置项$w_0$。则输出为o(x) = \left\{\begin{matrix} 1, & if...
阅读(634) 评论(0)

机器学习之k近邻

核心思想KNN算法假设给定的训练集中的实例都已经分好类了,对于新的实例,根据离它最近的k个训练实例的类别来预测它的类别。即这k个实例大多数属于某个类别则该实例就属于某个类别。比如k为5,离新实例a最近的5个样本的情况为,3个样本属于A类,1个样本属于B类,一个样本属于C类,那么新实例a属于A类。常用距离 欧氏距离 d(x,y)=∑ni=1(xi−yi)2−−−−−−−−−−−−√d(x,y) =...
阅读(811) 评论(0)

TensorFlow训练Logistic回归

Logistic回归在用线性模型进行回归训练时,有时需要根据这个线性模型进行分类,则要找到一个单调可微的用于分类的函数将线性回归模型的预测值关联起来。这时就要用到逻辑回归,之前看吴军博士的《数学之美》中说腾讯和谷歌广告都有使用logistics回归算法。如下图,可以清晰看到线性回归和逻辑回归的关系,一个线性方程被逻辑方程归一化后就成了逻辑回归。.Logistic模型对于二分类,输出y∈{0,1}y...
阅读(3341) 评论(0)

TensorFlow训练单特征和多特征的线性回归

线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。相关知识可看“相关阅读”。主要思想在TensorFlow中进行线性回归处理重点是将样本和样本特征矩阵化。单特征线性回归单特征回归模型为:y=wx+by = wx + b构建模型X = tf.placeholder(tf.float32, [None, 1]) w = tf.Variable(tf.zeros([1,...
阅读(1702) 评论(0)

机器学习之朴素贝叶斯分类

朴素贝叶斯分类所有贝叶斯分类都是基于贝叶斯定理,朴素贝叶斯分类是贝叶斯分类中运用广泛简单的一种,另外,它还基于特征条件独立假设。贝叶斯定理贝叶斯定理是计算条件概率的公式,条件概率即是事件B发生的前提下事件A发生的概率,记作$P(A|B)$,叫做事件B发生的情况下A的条件概率。公式为:$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$公式大致推导: 如图,有$P(A|B) = \f...
阅读(1697) 评论(0)

机器学习之梯度下降法

方向导数如图,对于函数f(x,y),函数的增量与pp’两点距离之比在p’沿l趋于p时,则为函数在点p沿l方向的方向导数。记为$\frac{\partial f}{\partial l} = \lim_{\rho \rightarrow 0} \frac{f(x+\Delta x,y+\Delta y)-f(x,y)}{\rho } $,其中$\rho=\sqrt{(\Delta x)^{2} + (...
阅读(923) 评论(0)

[置顶] 机器学习的监督学习在研究什么

什么是监督学习简单来说,监督学习是对给定的输入输出样本进行学习并建立一个模型,该模型能对任意输入做出好的输出预测。 监督学习核心思想 所有可能的模型函数的集合称为假设空间,$H=\left \{ f|Y=f(X) \right \}$。 对于所有的模型函数集合,可能不知道是该用用逻辑回归模型、或贝叶斯模型、或神经网络模型还是用支持向量机模型。这个过程通常是一个不断迭代的过程,只有在不断地尝试比较才...
阅读(2154) 评论(0)

设计一个智能客服系统

背景:最近在设计一个公司的智能客服系统,通过对现有人工客服语料作为样本,通过训练样本完成整个QA过程或业务办理过程。整体思路 AliceBot负责闲聊,这里用了开源的语料,也可以添加语料到DB,基于AIML。 AbilityBot主要负责公司业务上的咨询和办理,它提供了不同的能力接口,供外系统交互。 predict模块用于预测响应。 train模块用于训练客服对话样本。 语音转换由第三方语音识别服务...
阅读(3180) 评论(0)

机器学习之层次聚类

层次聚类聚类是将样本进行归类形成K个簇,层次聚类是其中的一种方法。它将数据组成一棵聚类树,过程可以是凝聚形式或分裂形式。核心思想凝聚是一开始将每个样本当做一个聚类,接着通过计算将距离最近的两个聚类合并,成为新聚类,每次合并聚类总数减少一个,不断循环合并操作,直到所有聚类合并成一个聚类或当聚类数量到达某预定值或当聚类直接距离达到某阀值后停止合并。而分裂则与凝聚相反,一开始将所有样本当做一个聚类,每次分...
阅读(1515) 评论(0)
22条 共2页1 2 下一页 尾页
    打赏作者

    赞作者(*^__^*)



    如果您觉得作者写的文章有帮助到您,您可以打赏作者一瓶汽水(*^__^*)

    作者

    笔名:seaboat 汪洋之舟

    github:https://github.com/sea-boat

    微信:



    公众号:

    个人资料
    • 访问:866605次
    • 积分:12009
    • 等级:
    • 排名:第1314名
    • 原创:284篇
    • 转载:5篇
    • 译文:1篇
    • 评论:316条
    博客专栏