[置顶] 如何用TensorFlow训练聊天机器人(附github)

前言实际工程中很少有直接用深度学习实现端对端的聊天机器人,但这里我们来看看怎么用深度学习的seq2seq模型来实现一个简易的聊天机器人。这篇文章将尝试使用TensorFlow来训练一个基于seq2seq的聊天机器人,实现根据语料库的训练让机器人回答问题。seq2seq关于seq2seq的机制原理可看之前的文章《深度学习的seq2seq模型》。循环神经网络在seq2seq模型中会使用到循环神经网络,目...
阅读(9833) 评论(12)

TensorFlow实现seq2seq

前言前面在《深度学习的seq2seq模型》文章中已经介绍了seq2seq结构及其原理,接下去这篇文章将尝试使用TensorFlow来实现一个seq2seq网络结构,该例子能通过训练给定的训练集实现输入某个序列输出某个序列,其中输入序列和输出序列相同,这里选择使用LSTM模型。训练样本集为方便起见这里使用随机生成的序列作为样本,序列的长度也是随机的且在指定的范围内。LSTM机制原理关于LSTM机制原理...
阅读(827) 评论(0)

TensorFlow构建循环神经网络

前言前面在《循环神经网络》文章中已经介绍了深度学习的循环神经网络模型及其原理,接下去这篇文章将尝试使用TensorFlow来实现一个循环神经网络,该例子能通过训练给定的语料生成模型并实现对字符的预测。这里选择使用最原始的循环神经网络RNN模型。语料库的准备这里就简单用纪伯伦的《On Friendship》作为语料吧。RNN简要说明用下面两张图简要说明下,RNN模型有多个时刻的输入,从第一个图中看到输...
阅读(650) 评论(0)

如何用TensorFlow训练词向量

前言前面在《谈谈谷歌word2vec的原理》文章中已经把word2vec的来龙去脉说得很清楚了,接下去这篇文章将尝试根据word2vec的原理并使用TensorFlow来训练词向量,这里选择使用skip-gram模型。语料库的准备这里仅仅收集了网上关于房产新闻的文章,并且将全部文章拼凑到一起形成一个语料库。skip-gram简要说明skip-gram核心思想可以通过下图来看,假设我们的窗口大小为2,...
阅读(1825) 评论(1)

TensorFlow训练Logistic回归

Logistic回归在用线性模型进行回归训练时,有时需要根据这个线性模型进行分类,则要找到一个单调可微的用于分类的函数将线性回归模型的预测值关联起来。这时就要用到逻辑回归,之前看吴军博士的《数学之美》中说腾讯和谷歌广告都有使用logistics回归算法。如下图,可以清晰看到线性回归和逻辑回归的关系,一个线性方程被逻辑方程归一化后就成了逻辑回归。.Logistic模型对于二分类,输出y∈{0,1}y...
阅读(3336) 评论(0)

TensorFlow训练单特征和多特征的线性回归

线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。相关知识可看“相关阅读”。主要思想在TensorFlow中进行线性回归处理重点是将样本和样本特征矩阵化。单特征线性回归单特征回归模型为:y=wx+by = wx + b构建模型X = tf.placeholder(tf.float32, [None, 1]) w = tf.Variable(tf.zeros([1,...
阅读(1697) 评论(0)
    打赏作者

    赞作者(*^__^*)



    如果您觉得作者写的文章有帮助到您,您可以打赏作者一瓶汽水(*^__^*)

    作者

    笔名:seaboat 汪洋之舟

    github:https://github.com/sea-boat

    微信:



    公众号:

    个人资料
    • 访问:865721次
    • 积分:11999
    • 等级:
    • 排名:第1329名
    • 原创:284篇
    • 转载:5篇
    • 译文:1篇
    • 评论:316条
    博客专栏